本書從空氣動力學試驗理論基礎(chǔ)啟篇,系統(tǒng)介紹了當今空氣動力學風洞試驗技術(shù)及研究前沿技術(shù)。主要涉及風洞原理、試驗方案規(guī)劃、數(shù)據(jù)分析方法、試驗典型案例等,覆蓋了航空航天領(lǐng)域主要飛行器試驗,從低速到高超聲速試驗。緊密聯(lián)系實踐是本書的主要特色。所介紹內(nèi)容選擇合適章節(jié)可作為本科必修或選修課教材或作為高年級參考書,主要作為相關(guān)專業(yè)的
直升機氣彈動力學一直是直升機領(lǐng)域研究的重點、難點和熱點,無鉸式旋翼和無軸承旋翼是先進直升機的標志,傾轉(zhuǎn)旋翼直升機是高速遠程先進直升機的發(fā)展方向。本書系統(tǒng)提出和闡述了無鉸式旋翼、無軸承旋翼和傾轉(zhuǎn)旋翼直升機氣彈動力學的理論和方法,系統(tǒng)反映了作者近十多年來取得的一系列國際先進的研究成果。本書共14章,第1章主要介紹了先進直升
氣動布局是承載各類先進飛行器的外形載體,其優(yōu)劣直接影響飛行器的總體性能。高超聲速飛行是當前技術(shù)發(fā)展的前沿和熱點,其氣動外形究竟應(yīng)該如何設(shè)計,應(yīng)建立哪些設(shè)計理論及方法,成為高超聲速空氣動力研究者亟待回答的問題。雖然國內(nèi)外科研工作者對高超聲速氣動布局技術(shù)的研究歷史久遠,研究成果眾多,但還缺少一本為讀者系統(tǒng)介紹從外流到內(nèi)流、
本書從學科的角度介紹飛行器結(jié)構(gòu)設(shè)計,強調(diào)飛行器結(jié)構(gòu)作為系統(tǒng)的一部分,從系統(tǒng)的角度介紹形成結(jié)構(gòu)設(shè)計方案的過程,在強調(diào)飛行器設(shè)計的基本概念和突出其物理實現(xiàn)的設(shè)計屬性的同時,以介紹設(shè)計方法、設(shè)計理念和關(guān)鍵設(shè)計技術(shù)為主,而將具體的飛行器結(jié)構(gòu)設(shè)計作為應(yīng)用實例進行講述。為做到和實踐相結(jié)合,書中提供了很多如何應(yīng)用本書內(nèi)容解決工程實際
本書基于計算流體力學、實驗流體力學、飛行仿真與虛擬現(xiàn)實等學科理論,采用建模分析、數(shù)值仿真、虛擬飛行風洞實驗與地面飛行模擬相結(jié)合的方法,對結(jié)冰后的空氣動力學和飛行力學特性進行闡述。重點對結(jié)冰導致的復雜非定常流動特性、飛機氣動特性和飛行特性變化規(guī)律、非定常空氣動力學和非線性飛行力學的耦合作用及其與飛行安全之間復雜作用過程和
"本書以航空飛行大數(shù)據(jù)的智能分析方法與應(yīng)用為主要內(nèi)容,分為兩篇。第1篇為“理論與方法”,包括第1~4章,闡述了航空飛行大數(shù)據(jù)的數(shù)據(jù)來源、數(shù)據(jù)特點、數(shù)據(jù)分析需求與數(shù)據(jù)應(yīng)用;并結(jié)合航空飛行數(shù)據(jù)的特點,構(gòu)建了航空飛行大數(shù)據(jù)智能分析框架與數(shù)據(jù)模型,探討了智能分析涉及的關(guān)鍵技術(shù)和航空飛行大數(shù)據(jù)預處理技術(shù),以及航空飛行大數(shù)據(jù)常用智
本書分兩大部分,第一部分為空氣動力學基礎(chǔ)(理論篇),包括:流體靜力學、動力學、勢流理論、粘性流體力學、邊界層理論與分離、可壓縮流動;第二部分為飛行器空氣動力學(應(yīng)用篇),包括:低速翼型繞流、低速機翼繞流、翼身組合體繞流(低速飛行器);亞聲速翼型和機翼繞流、跨聲速翼型和機翼繞流(高亞聲速運輸機)、超聲速翼型和機翼繞流(超
本書系統(tǒng)梳理了跨聲速風洞內(nèi)的主要噪聲源,總結(jié)了典型噪聲源的數(shù)值建模與仿真計算方法,結(jié)合大量的試驗數(shù)據(jù)深入分析了跨聲速風洞內(nèi)的噪聲源特性。在此基礎(chǔ)上,針對典型噪聲源提出了降噪方法及特定結(jié)構(gòu)的聲學設(shè)計方法,包括管路降噪方案、通氣壁試驗段聲學設(shè)計等。本書的主要讀者對象為風洞聲學設(shè)計和試驗領(lǐng)域的研究人員、工程技術(shù)人員以及高校從
本書主要從動力學模型機理分析的角度,基于人-機-環(huán)閉環(huán)系統(tǒng),論述了運輸機的駕駛員誘發(fā)振蕩(PIO)現(xiàn)象的影響因素和抑制方法;基于穩(wěn)定性理論對人-機-環(huán)系統(tǒng)進行了穩(wěn)定性分析與穩(wěn)定域的估計;基于極值理論對PIO科目風險進行定量評估,為運輸機的系統(tǒng)設(shè)計與安全性預計提供理論支撐。在本書的最后,對PIO地面模擬試驗的平臺搭建與組
由于直升機飛行所需要的氣動力主要來源于旋翼,因此旋翼的空氣動力學問題就成為直升機技術(shù)領(lǐng)域中最基礎(chǔ)和重要的一環(huán)。旋翼空氣動力影響了直升機設(shè)計中關(guān)心的許多特性,如飛行性能、飛行載荷、振動、穩(wěn)定性、飛行品質(zhì)和噪聲等(Johnson《RotorcraftAerodynamics》)。因此,本書的主要篇幅是圍繞直升機旋翼空氣動力