全書分三冊。第一冊的內(nèi)容是:一元微積分,初等微分方程及其應用;第二冊的內(nèi)容是:一元微積分的進一步討論,多元微積分;第三冊的內(nèi)容是:曲線、曲面與微積分,級數(shù)與含參變元的積分等。 本書第一版于1990年出版,作者于2002年去世。近30年一直是經(jīng)典長銷教材,每年有4000-5000冊的銷量。但由于出版時間過早,很多術(shù)語、
四元數(shù)體上微分方程理論已經(jīng)在微分方程定性與穩(wěn)定性研究中發(fā)揮著重要的作用,并以其豐富的理論思想和復雜的數(shù)學技巧應用到數(shù)學的各個研究領(lǐng)域之中,本書總結(jié)國內(nèi)外知名學者的研究成果下,作者根據(jù)幾年來在這方面的研究總結(jié),把一些**的研究進展和新成果介紹給廣大讀者,希望讀者能進一步了解它。目前國際上沒有一本關(guān)于四元數(shù)體上微分方程的著
《實變函數(shù)與泛函分析學習指導》對實變函數(shù)與泛函分析以及Banach空間中微積分學的一些基本問題和習題進行了詳細的分析、解答和討論,注重通過反例來加深讀者對概念和內(nèi)容的理解!秾嵶兒瘮(shù)與泛函分析學習指導》主要內(nèi)容包括集合與測度、可測函數(shù)、Lebesgue積分、線性賦范空間、內(nèi)積空間、有界線性算子與有界線性泛函、Banac
本書是關(guān)于以地心參考橢球面為邊界面的重力第二大地邊值問題的專著,包括14章和6個附錄,涵蓋了第二大地邊值問題原理、邊值問題解式、地形壓縮、地形影響、大氣影響、殘余地形位、Helmert擾動位模型生成、重力擾動延拓、Hotine積分、橢球改正、橢球面邊值問題、邊值數(shù)據(jù)準備和數(shù)值實驗等。本書全面系統(tǒng)地介紹了用第二大地邊值問
本書內(nèi)容涉及正則性贏得型和正則性損失型兩類耗散波動方程的漸近性態(tài)。其一是廣義雙色散方程等正則性贏得型耗散波動方程的整體存在性、衰減估計、漸近性態(tài)、逐點衰減估計及加權(quán)衰減估計等等。通過對解算子的詳盡分析,建立由波動方程、熱方程的基本解以及非線性項表示的漸近性態(tài)。其二是結(jié)構(gòu)耗散的廣義雙色散方程、具有阻尼項六階Boussin
本書是為大學數(shù)學系基礎(chǔ)復分析課程編寫的教材.全書共七章,內(nèi)容包括:復數(shù)、點集拓撲基礎(chǔ)、復函數(shù)、初等共形映射、復積分、級數(shù)與乘積展開、共形映射與Dirichlet問題.本書在選材上注重幾何直觀.在內(nèi)容上力求全面,包括了特殊函數(shù)的基礎(chǔ)內(nèi)容.在寫作上敘述精練.各章配有適量習題.
本書以漫畫形式講解初中數(shù)學中的函數(shù)知識,旨在讓數(shù)學公式、函數(shù)、圖形等知識點的學習更容易、更有趣,培養(yǎng)數(shù)學思維、函數(shù)思維。本書內(nèi)容以初中階段函數(shù)學習為主,從身邊的現(xiàn)象切入,講解比例、一次函數(shù)、二次函數(shù)的重點和難點,知識鏈前承小學算術(shù),后接高中數(shù)學。
郭柏靈論文集第十四卷收集的是郭柏靈先生發(fā)表于2016年度的主要科研論文,涉及的方程范圍寬廣,有確定性偏微分方程和隨機偏微分方程,研究的問題包括適定性、爆破性、漸近性、孤立波等.
本書是兩冊泛函分析教材中的上冊,系統(tǒng)地介紹了線性泛函分析的基礎(chǔ)知識。全書共分四章:度量空間、線性算子與線性泛函、緊算子與Fredholm算子,以及廣義函數(shù)與Sobolev空間。本書的主要特點是側(cè)重于分析若干基本概念和重要理論的來源和背景,強調(diào)培養(yǎng)讀者運用泛函方法解決問題的能力,注意介紹泛函分析理論與數(shù)學其他分支的聯(lián)系。
本書依據(jù)民族預科教育“預補結(jié)合”的原則進行設(shè)計,以民族預科階段的教學任務為中心內(nèi)容,以少數(shù)民族預科學生的認知水平及心理特征為著眼點來編寫。在數(shù)學內(nèi)容的選擇與組織上,重思路、重方法、重應用,考慮到民族預科教學學時的限制,在必須精簡的條件下,注意了學科的系統(tǒng)性。 全書共八章,涵蓋了一元微積分的主要內(nèi)容;同時適當介紹微積分
信念修正是人工智能的研究分支之一。在哲學,認知心理學和數(shù)據(jù)庫更新等領(lǐng)域中,很早就有對信念修正的討論和研究。AGM公設(shè)在20世紀70年代末被提出來,它是任何一個合理的信念修正算子應該滿足的最基本條件!禦-演算:一種信念修正的邏輯》**作者李未院士在20世紀80年代中期提出R-演算,這是一個滿足AGM公設(shè),非單調(diào)的,并且
本書系統(tǒng)介紹q-級數(shù)研究領(lǐng)域的主要理論、方法及其應用.全書共九章,內(nèi)容包括正整數(shù)的分拆、基本超幾何級數(shù)、求和與變換公式及其應用、雙邊基本超幾何級數(shù)及其應用、Bailey對及其應用、Carlitz反演及其應用、q-微分算子及其應用、q-指數(shù)算子及其應用、一類Hecke型恒等式等.本書吸納了q-級數(shù)理論研究領(lǐng)域的新成果.《
本書主要講授Lebesgue測度與積分理論的基本內(nèi)容。全書共6章,內(nèi)容包括集合論初步、可測集、可測函數(shù)、可積函數(shù)、微分與積分、空間。本書力求用簡明的語言闡述Lebesgue測度與積分理論的主要思想和方法,注重基本概念的講解和基本方法的介紹,特別注重講透Lebesgue積分理論與Riemann積分理論的區(qū)別和聯(lián)系。本書還
《數(shù)值泛函及其應用》用通俗淺顯的語言介紹了泛函分析中與工程計算、數(shù)值逼近有密切關(guān)系的基本理論和有關(guān)重要定理及公式,如距離空間中的壓縮映像原理與迭代法;Banach空間中的線性泛函與線性逼近;Hilbert空間中的正交分解、投影與逼近;Fourier分析與快速Fourier變換;泛函求極值的變分理論,有限元的變分原理及計
本書系統(tǒng)完整地介紹了測度論和概率論的基礎(chǔ)知識.前5章介紹一般可測空間和Hausdorff空間上的測度與積分,包括局部緊拓撲群上的Haar測度.第6章介紹距離空間上測度的弱收斂和局部緊Hausdorff空間上測度的淡收斂,第7章介紹與測度論有關(guān)的概率論基礎(chǔ),第8章介紹離散時間鞅的基本理論,第9章介紹Hilbert空間和B
本書以數(shù)學模型及計算為主線,圍繞微分方程與反問題,介紹了數(shù)學建模與計算的理論、方法及應用。微分方程及反問題研究在計算科學與工程領(lǐng)域具有特別重要的意義,在大數(shù)據(jù)和人工智能快速發(fā)展的時代正扮演著理論創(chuàng)新與技術(shù)升級的核心角色且起著不可替代的作用!禕R》本書首先介紹數(shù)學建模的理論與方法,特別是微分方程、積分方程與反問題、線性
數(shù)學物理反問題(也包括地球科學反演)已成為應用數(shù)學發(fā)展和成長最快的領(lǐng)域之一.基于模型驅(qū)動的傳統(tǒng)科學和基于大數(shù)據(jù)分析的人工智能領(lǐng)域,都要求求解反問題.該書把地球科學反演問題高度概括,以第一類算子方程作為基本問題描述的出發(fā)點,系統(tǒng)開展反問題的基本理論、重要方法和應用研究描述.該書涵蓋了反演領(lǐng)域的大部分知識點,包括反問題的不
本書主要討論經(jīng)典李群方法在微分方程中的應用,內(nèi)容涵蓋了微分方程的李群方法的一些**研究成果.除緒論外,全書共6章,基本內(nèi)容包括與李群方法相關(guān)的基本概念、多種類型微分方程的李群分析、偏微分方程守恒向量的構(gòu)造和精確解的求解,以及李群方法的其他應用.本書系統(tǒng)性強,各章節(jié)自成體系又相互聯(lián)系.在內(nèi)容敘述和安排上,盡量采用通俗易懂
本書共6章。第1章是動力系統(tǒng)和函數(shù)方程簡介。第2章介紹Sharkovsky序列、倍周期分岔、Feigenbaum函數(shù)方程、FKS函數(shù)方程。第3章介紹實數(shù)的動力系統(tǒng)展開,以及相關(guān)展開的分析性質(zhì)。第4章介紹區(qū)間映射的共軛問題,包括單調(diào)映射、多峰映射、Markov映射,以及馬蹄映射等;討論共軛方程組的奇異解,無處可微連續(xù)解和
本書主要解決數(shù)學分析中的收斂與發(fā)散及相關(guān)的一些問題,內(nèi)容包括數(shù)列的收斂與發(fā)散、反常積分的收斂與發(fā)散、數(shù)項級數(shù)的收斂與發(fā)散等.本書深入淺出,表達清楚,可讀性和系統(tǒng)性強.書中主要通過一些疑難解析和大量的典型例題來解析數(shù)學分析的內(nèi)容和解題方法,并提供了一定數(shù)量的習題,便于教師在習題課中使用和學生在學習數(shù)學分析時練習使用.本書