本書針對大數(shù)據(jù)呈現(xiàn)的體量巨大、多源異構(gòu)、動態(tài)性和不確定性等特點,以粒計算理論為基礎(chǔ),以優(yōu)勢關(guān)系粗糙集模型為研究對象,以增量學(xué)習(xí)技術(shù)為方法,以并行計算框架為支撐,構(gòu)建大數(shù)據(jù)分析與挖掘的原理和方法及其算法,并融入了相關(guān)領(lǐng)域?qū)W者在動態(tài)知識發(fā)現(xiàn)、數(shù)據(jù)融合、大數(shù)據(jù)并行處理等成果,反映了基于粒計算和粗糙集視角處理大數(shù)據(jù)的最新進展。
本書以多智能體系統(tǒng)協(xié)同群集運動控制為主線,首先介紹圖論和控制器設(shè)計所用到的基礎(chǔ)理論知識;其次,分別從拓撲結(jié)構(gòu)的邊保持和代數(shù)連通度兩個角度介紹了連通性保持條件下的協(xié)同群集運動控制協(xié)議設(shè)計方法。進而,從個體動態(tài)模型和拓撲結(jié)構(gòu)模型兩方面繼續(xù)深入,針對典型的輪式移動機器人非完整約束模型介紹了連通性保持條件下的協(xié)同控制策略,為簡
本書對近年來認知計算和多目標優(yōu)化領(lǐng)域常見的理論及技術(shù)進行了較為全面的闡述和總結(jié),并結(jié)合作者多年的研究成果,對相關(guān)理論及技術(shù)在應(yīng)用領(lǐng)域的實踐情況進行了展示和報告。
本書對近年來稀疏學(xué)習(xí)、分類與識別領(lǐng)域常見的理論及技術(shù)進行了較為全面的闡述和總結(jié),并結(jié)合作者多年的研究成果,對相關(guān)理論及技術(shù)在應(yīng)用領(lǐng)域的實踐情況進行了展示和報告。
《神經(jīng)網(wǎng)絡(luò)導(dǎo)論》共5章,第1章主要介紹神經(jīng)網(wǎng)絡(luò)、微分系統(tǒng)穩(wěn)定性理論和泛函分析的基本理論和概念;第2章介紹神經(jīng)網(wǎng)絡(luò)的基本模型及算法;第3章介紹后期比較熱門的三種神經(jīng)網(wǎng)絡(luò),即Hopfield神經(jīng)網(wǎng)絡(luò)、細胞神經(jīng)網(wǎng)絡(luò)與雙向聯(lián)想(BAM)神經(jīng)網(wǎng)絡(luò)的模型及動力學(xué)問題;第4章介紹復(fù)雜神經(jīng)網(wǎng)絡(luò)模型及動力學(xué)問題;第5章介紹神經(jīng)網(wǎng)絡(luò)的應(yīng)用
隨著信息爆炸產(chǎn)生的海量數(shù)據(jù)時代的來臨,數(shù)據(jù)中所蘊含的價值將會對人類社會產(chǎn)生直接的,全面的,甚至是革命性的影響。因此,在大數(shù)據(jù)背景下,有效地分析,組織和使用各類數(shù)據(jù),將對科技進步以及經(jīng)濟發(fā)展產(chǎn)生巨大的推動作用,孕育出前所未有的機遇。針對大數(shù)據(jù)技術(shù)體系架構(gòu),本著作總結(jié)出在大數(shù)據(jù)處理流程中,所面臨不同層面的問題及其相互關(guān)系,
本書從仿生學(xué)的角度,闡述AI面臨的挑戰(zhàn)和前沿研究方向,同時融入作者在AI研究中部分最新成果。反映了人工智能發(fā)展的最新動態(tài),為生物信息學(xué)或其他學(xué)科的特征分析提供手段和方法,為研究和開發(fā)更高層次的human-like智能打下基礎(chǔ)。本書強調(diào)新視野、先進性、實用性和可讀性,書中涉及的經(jīng)典例子和算法都將提供程序?qū)崿F(xiàn),附在隨書光盤
20世紀50年代以來,人工智能出現(xiàn)了符號主義、連接主義和行為主義等主導(dǎo)性研究范式。理論界普遍認為,人工智能已經(jīng)超越了現(xiàn)有的范式理論,逐步形成了一種融合的趨勢。然而,如何對人工智能各研究范式進行融合以及在什么樣的基礎(chǔ)上進行融合,這一難題成為人工智能理論進一步發(fā)展的瓶頸所在。本書從貫穿整個人工智能發(fā)展過程的兩條主要線索--
借鑒生物免疫系統(tǒng)的分層防御機理以及層次間的相互作用,作者提出了用于機電設(shè)備故障診斷的免疫診斷模型。將故障檢測與診斷功能進行整合,研究機電設(shè)備異常檢測與故障診斷的免疫算法與模型,分層解決設(shè)備的狀態(tài)監(jiān)測、故障定位與診斷等關(guān)鍵問題,建立了異常狀態(tài)監(jiān)測與故障診斷一體化的快速反應(yīng)機制。第一層,異常追蹤監(jiān)測。在獲取設(shè)備運行狀態(tài)數(shù)據(jù)
《神經(jīng)系統(tǒng)建模與控制工程》結(jié)合神經(jīng)生物學(xué)、神經(jīng)計算科學(xué)與自動控制科學(xué)的交叉優(yōu)勢,主要介紹了神經(jīng)系統(tǒng)場效應(yīng)的動力學(xué)模型,分析了外電場作用下的神經(jīng)元以及神經(jīng)元網(wǎng)絡(luò)的動力學(xué)特性,重點闡述參數(shù)辨識方法在神經(jīng)系統(tǒng)建模中的應(yīng)用,以及先進控制算法例如優(yōu)化控制、迭代學(xué)習(xí)、模型預(yù)測控制等在單神經(jīng)元放電模式以及神經(jīng)元網(wǎng)絡(luò)同步特性控制中的應(yīng)