Physical fundamentals of nanomaterials(納米材料物理基礎(chǔ))
定 價(jià):298 元
- 作者:張邦維 著
- 出版時(shí)間:2019/1/1
- ISBN:9787122329455
- 出 版 社:化學(xué)工業(yè)出版社
- 中圖法分類:TB383.3
- 頁碼:465
- 紙張:
- 版次:01
- 開本:16開
本書以最新原始論文為素材,采取從讀者出發(fā)的角度和態(tài)度,將納米材料學(xué)發(fā)展現(xiàn)狀和水平呈獻(xiàn)給廣大讀者。著濃墨于納米材料最主要和通常使用的制備方法、納米材料的結(jié)構(gòu)、它的形成機(jī)理、特別是 納米材料物理性能理論的內(nèi)容,而且包括了納米材料的力學(xué)、熱學(xué)、光學(xué)、電學(xué)、磁學(xué)等物理學(xué)性能方 面的內(nèi)容。書中獨(dú)特地強(qiáng)調(diào)了納米材料的雙刃性。
本書沒有像其他納米材料類書籍一樣按照納米材料的種類來編寫,而是在作者總結(jié)和歸納的基礎(chǔ)上 將其共性問題抽提出來進(jìn)行闡述和討論,使讀者納米材料的物理基礎(chǔ)理論研究進(jìn)展有了更深入地了解。
本書不僅能夠給從事納米材料研究的科研、技術(shù)人員以參考,而且能夠拓寬相關(guān)專業(yè)高年級(jí)本科生和研究生的學(xué)術(shù)視野。
張邦維,湖南大學(xué)應(yīng)用物理系,教授、博導(dǎo),材料物理科學(xué)家。湖南大學(xué)應(yīng)用物理專業(yè)和實(shí)驗(yàn)室創(chuàng)始人,中國高等科學(xué)技術(shù)中心(世界實(shí)驗(yàn)室)成員,中國科學(xué)院國際材料物理中心長期成員,中國材料研究會(huì)高級(jí)會(huì)員,中國物理學(xué)會(huì)會(huì)員,美國物理學(xué)會(huì)會(huì)員。湖南省第八屆政協(xié)委員。1992年起享受政府特殊津貼。多次獲教學(xué)獎(jiǎng)。
1958 年畢業(yè)于吉林大學(xué)物理系,先后在吉林大學(xué)、中國科學(xué)院金屬研究所、湖南大學(xué)工作。曾任德國等離子體物理研究所、美國弗吉尼亞大學(xué)材料科學(xué)系客座教授,并多次到荷蘭FOM研究所、美國康萊狄克大學(xué)材料科學(xué)系做學(xué)術(shù)報(bào)告。
提出了有其特色的非晶態(tài)合金形成理論,固溶體理論和普適分析型嵌入原子模型理論。創(chuàng)新并系統(tǒng)地研究了數(shù)種非晶態(tài)和納米合金系材料。曾獲省部級(jí)科技進(jìn)步二等獎(jiǎng)2次,三等獎(jiǎng)3次。獲德國馬普獎(jiǎng)學(xué)金。完成國家自然科學(xué)基金、省部委和國際合作科研課題16項(xiàng),發(fā)表學(xué)術(shù)論文209篇(英文112篇,中文97篇)。
Foreword xi
Preface xiii
Translator’s Preface xv
Preface to the English Version of “Physical Fundamentals of Nanomaterials” xvii
Acknowledgment and Authorization Details for Figures Used in the Book xix
CHAPTER 1 Introduction 1
1.1 Nanomaterial Age 1
1.2 What Are Nanomaterials? 3
1.3 History of Nanomaterial Development 5
1.3.1 Germination Stage 5
1.3.2 Preliminary Preparation Stage 7
1.3.3 Rapid-Development Stage 8
1.3.4 Industrial and Commercial Application Stage 10
1.4 Importance of Nanomaterials 11
1.4.1 Nanotechnology Programs of Leading Countries 11
1.4.2 Nanotechnology Investment Among Leading Countries 11
1.4.3 Analysis of the Importance of Nanotechnology 13
1.5 Potential Problems of Nanomaterials 14
1.6 Purpose of This Book: Fundamentals of Nanomaterial Physics 17
References 18
CHAPTER 2 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Gas-Phase Processes 19
2.1 Principles of Physical Vapor Deposition 20
2.1.1 Nucleation 21
2.1.2 Growth 22
2.2 Physical Vapor Deposition 26
2.2.1 Electrical Resistance Heating Method 26
2.2.2 Plasma Heating Method 29
2.2.3 Laser Heating Method 31
2.3 Chemical Vapor Deposition 38
2.3.1 CVD Thermodynamics and Kinetics 39
2.3.2 CVD Process Technology for Nanomaterial Preparation 42
2.3.3 Catalytic CVD and CNT Preparation 48
2.4 Filtered Cathodic Vacuum Arc Deposition 58
2.4.1 Magnetic Filtration and FCVA Devices 59
2.4.2 Examples of Filtered Cathodic Vacuum Deposition Films 60
2.5 Comparison of Various Vapor Deposition Methods 65
References 66
CHAPTER 3 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared in the Liquid Phase 71
3.1 Precipitation 72
3.1.1 Coprecipitation and Fractional Precipitation 72
3.1.2 Homogeneous Precipitation 75
3.2 SolGel Method 82
3.2.1 SolGel Procedure 83
3.2.2 SolGel Reaction Mechanism 83
3.2.3 Examples of SolGel Prepared Nanomaterials 84
3.3 Chemical-Reduction Method 94
3.3.1 Chemical-Reduction Preparation Technology 94
3.3.2 Chemical-Reduction Reaction Mechanisms 102
3.3.3 Preparation of Crystalline Nanomaterials via Chemical Reduction 103
3.4 Comparison of Various Liquid Nanoparticle Preparation Methods 108
References 109
CHAPTER 4 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Solid-Phase Syntheses 113
4.1 Mechanical Alloying 114
4.1.1 Ball Mill 115
4.1.2 MA Process Parameters 116
4.1.3 MA-Prepared Nanopowder Formation Mechanisms 120
4.1.4 Examples of Nanomaterials Synthesized via Mechanical Alloying 123
4.2 Nanomaterial Preparation via Solid-Phase Methods 127
4.2.1 Preparation of Bulk Nanomaterials via Solid-Phase Methods 128
4.2.2 Amorphous Nanocrystallization 139
4.3 Microstructures and Defects in Body Nanomaterials 153
4.3.1 Grains in Body Nanomaterials 153
4.3.2 Grain Boundaries in Body Nanomaterials 157
4.3.3 Defects in Body Nanomaterials 163
References 172
CHAPTER 5 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Self-Assembly 177
5.1 What Is Self-Assembly? 178
5.2 Types and Common Characteristics of Self-Assembly Mechanisms 179
5.2.1 Types of Self-Assembly Mechanisms 179
5.2.2 Common Characteristics of Self-Assembly 182
5.3 Nanomaterial Fabrication via Self-Assembly 183
5.3.1 Metal and Alloy Components 183
5.3.2 Semiconductor Components 187
5.3.3 Polymer Supermolecules and Biomolecular Components 192
5.4 Template-Based Nanomaterial Fabrication 202
5.4.1 Fabrication of Ordered Nanohole Templates 202
5.4.2 Metal and Alloy Nanomaterials Prepared via Templated Self-Assembly 204
5.4.3 Preparation of Semiconductor Nanomaterials via Self-Assembly 206
References 209
CHAPTER 6 Mechanical Properties of Nanomaterials 211
6.1 Elasticity of Nanomaterials 212
6.2 Strengths, Hardnesses and HallPetch Relationships in Nanomaterials 216
6.2.1 Experimental Strength Data 217
6.2.2 The Relationship Between Hardness and HallPetch Effects 222
6.3 Nanomaterial Fracture and Fatigue 223
6.3.1 Facture Strength and Toughness 224
6.3.2 Fatigue 226
6.4 Nanomaterial Creep and Superplasticity 229
6.4.1 Creep 230
6.4.2 Superplasticity 237
6.5 Deformation and Fracture Mechanisms in Nanomaterials 242
6.5.1 Nanomaterial Deformation Mechanisms 243
6.5.2 Nanomaterial Fracture Mechanisms 245
References 248
CHAPTER 7 Thermal Properties of Nanomaterials 251
7.1 Melting Point 252
7.1.1 Elevated and Lowered Nanomaterial Melting Points 252
7.1.2 Nanomaterial Melting Point Simulations 253
7.1.3 Melting Enthalpy and Entropy in Nanomaterials 258
7.1.4 Nanoalloy Phase Diagrams 259
7.2 Thermal Conductivity 261
7.2.1 Experimental Measurement of Nanomaterial Thermal Conductivities 261
7.2.2 Theoretical Simulation of Nanomaterial Thermal Conductivity 268
7.3 Specific Heat 270
7.3.1 Debye Temperatures of Nanomaterials 270
7.3.2 Specific Heats of Nanomaterials 276
7.4 Thermal Expansion 281
References 287
CHAPTER 8 Optical Properties of Nanomaterials 291
8.1 Light Absorption of Nanomaterials 292
8.1.1 Instances of Light Absorption Nanomaterials 292
8.1.2 Red- and Blueshift Phenomenon of Light Absorption 294
8.2 Colors of Nanomaterials 298
8.3 Light-Emission of Nanomaterials 301
8.3.1 Quantum Yield 302
8.3.2 Photoluminescence of Nanomaterials 305
8.3.3 Electroluminescence of Nanomaterials 311
8.4 Magnetooptical Properties of Nanomaterials 319
8.4.1 Magnetooptical Effect 319
8.4.2 Magnetooptical Effect of Metal Nanoparticles and Nanoparticle Films 322
8.4.3 Magnetooptical Effect of Oxide Nanoparticles 328
8.4.4 Magnetooptical Effect of Composite Structure of Amorphous Magnetic Nanoparticles 331
References 333
CHAPTER 9 Electrical Properties of Nanometer Materials 337
9.1 Resistivity of Nanomaterials 338
9.1.1 Resistivity of Metal Nanomaterials 338
9.1.2 Resistivity of Alloy Nanomaterials 345
9.1.3 Resistivity of Semiconductor Nanomaterials 347
9.1.4 Resistivity of Oxide Nanomaterials 349
9.2 Theoretical Simulation of Resistivity for Nanomaterials 352
9.2.1 FS and MS Resistivity Theory 352
9.2.2 Theoretical Calculation of Resistivity of Metal Nanowires 353
9.2.3 Empirical Formula for Nanomaterial Resistivity 355
9.3 Thermoelectric Conversion Efficiency of Nanomaterials 356
9.3.1 Thermoelectric Conversion Efficiency and Related Parameters 356
9.3.2 Thermoelectric Conversion Efficiency of Nanomaterials 360
9.3.3 Theoretical Calculations of Conversion Efficiency for Nanothermoelectric Materials 363
9.4 Superconductivity of Nanomaterials 366
9.4.1 Superconductivity of Nanoparticle 366
9.4.2 Superconductivity of Nanofilms 367
9.4.3 Nanowire Superconductivity 373
References 382
CHAPTER 10 Magnetic Properties of Nanomaterials 387
10.1 Magnetic Moment of Nanometer Magnetic Materials 388
10.1.1 Magnetic Moment of 3D Atomic Group Ferromagnetic Metals 388
10.1.2 Magnetic Moment of 3D Ferromagnetic Clusters of Superlattice 392
10.1.3 Magnetic Moments of Nonferromagnetic Three Metal Clusters 396
10.2 Curie Temperature of Nanomagnetic Materials 398
10.2.1 Reduction of Curie Temperature 398
10.2.2 Curie Temperature of Superlattice 402
10.3 Magnetization and Coercivity of Nanometer Magnetic Materials 406
10.3.1 Magnetization 406
10.3.2 Coercivity 413
10.4 Magnetoresistance and Giant Magnetoresistance of Nanometer Magnetic Materials 423
10.4.1 Magnetoresistance and Anisotropic Magnetoresistance 423
10.4.2 Magnetoresistance of Nanometer Manganese Perovskite 426
10.4.3 Giant Magnetoresistance 436
References 446
Index 451