本書(shū)為美國(guó)經(jīng)典的遺傳學(xué)教材《遺傳學(xué)》(第10版)的雙語(yǔ)版改編教材。本書(shū)根據(jù)中國(guó)遺傳學(xué)教學(xué)計(jì)劃及各遺傳學(xué)教學(xué)實(shí)際,對(duì)原書(shū)進(jìn)行改編,刪除與分子生物學(xué)課程重疊的內(nèi)容,保留經(jīng)典遺傳學(xué)(1—8)章和現(xiàn)代遺傳學(xué)進(jìn)展(17—19章),補(bǔ)充部分遺傳學(xué)背景知識(shí),如孟德?tīng)柕慕?jīng)典遺傳學(xué)文獻(xiàn)、真菌的遺傳分析、細(xì)菌的遺傳作圖、病毒的遺傳作圖等。全書(shū)對(duì)重點(diǎn)章節(jié)配有中文翻譯,并補(bǔ)充了中英雙語(yǔ)的高頻遺傳學(xué)專業(yè)詞匯。此外,本書(shū)還將配備網(wǎng)絡(luò)雙語(yǔ)試題庫(kù)供教師和學(xué)生學(xué)習(xí)使用。
【美】威廉· S. 克盧格(William S. Klug)等
----------------------------
威廉· S. 克盧格(William S. Klug),新澤西學(xué)院(前特蘭頓州立學(xué)院)的生物學(xué)教授。自1974年起連續(xù)17年擔(dān)任生物系主任。獲得2004年Sigma-Pi國(guó)際杰出教授獎(jiǎng),同年,被提名為新澤西州研究與發(fā)展委員會(huì)的年度教育工作者。
宣勁松
----------------------------
宣勁松,1999年獲北京師范大學(xué)生物化學(xué)學(xué)士,2002年獲北京師范大學(xué)生物化學(xué)與分子生物學(xué)碩士,2005年獲中科院遺傳發(fā)育所遺傳學(xué)博士,F(xiàn)為北京科技大學(xué)副教授。
1 Introduction to Genetics
1 緒論
1.1 Genetics Has an Interesting Early History
1.1 有趣的遺傳學(xué)早期歷史
1.2 Genetics Progressed from Mendel to DNA in Less Than a Century
1.2 從孟德?tīng)柕紻NA ——遺傳學(xué)在一個(gè)世紀(jì)內(nèi)的飛速進(jìn)展
1.3 Discovery of the Double Helix Launched the Era of Molecular Genetics
1.3 DNA 雙螺旋結(jié)構(gòu)的發(fā)現(xiàn)開(kāi)啟了分子遺傳學(xué)新紀(jì)元
1.4 Development of Recombinant DNA Technology Began the Era of DNA Cloning
1.4 重組DNA 技術(shù)的發(fā)展開(kāi)啟了DNA 克隆時(shí)代
1.5 The Impact of Biotechnology Is Continually Expanding
1.5 生物技術(shù)的影響正持續(xù)擴(kuò)大
1.6 Genomics, Proteomics, and Bioinformatics Are New and Expanding Fields
1.6 基因組學(xué)、蛋白質(zhì)組學(xué)和生物信息學(xué)是日益發(fā)展的新興領(lǐng)域
1.7 Genetic Studies Rely on the Use of Model Organisms
1.7 遺傳學(xué)研究依賴于模式生物的使用
1.8 Genetics Has Had a Profound Impact on Society
1.8 遺傳學(xué)對(duì)社會(huì)已經(jīng)產(chǎn)生了深遠(yuǎn)影響
2 Mitosis and Meiosis
2 有絲分裂和減數(shù)分裂
2.1 Cell Structure Is Closely Tied to Genetic Function
2.1 細(xì)胞結(jié)構(gòu)與遺傳功能緊密相關(guān)
2.2 Chromosomes Exist in Homologous Pairs in Diploid Organisms
2.2 二倍體生物中染色體以同源染色體對(duì)的形式存在
2.3 Mitosis Partitions Chromosomes into Dividing Cells
2.3 有絲分裂將染色體分配至分裂細(xì)胞中
2.4 Meiosis Creates Haploid Gametes and Spores and Enhances Genetic Variation in Species
2.4 減數(shù)分裂產(chǎn)生單倍體配子和孢子并增加了物種的遺傳變異
2.5 The Development of Gametes Varies in Spermatogenesis Compared to Oogenesis
2.5 精子發(fā)生與卵子發(fā)生中的配子發(fā)育差異
2.6 Meiosis Is Critical to Sexual Reproduction in All Diploid Organisms
2.6 減數(shù)分裂對(duì)于所有二倍體生物的有性生殖都至關(guān)重要
2.7 Electron Microscopy Has Revealed the Physical Structure of Mitotic and Meiotic Chromosomes
2.7 電子顯微鏡揭示了有絲分裂和減數(shù)分裂過(guò)程中的染色體結(jié)構(gòu)
3 Mendelian Genetics
3 孟德?tīng)栠z傳學(xué)
3.1 Mendel Used a Model Experimental Approach to Study Patterns of Inheritance
3.1 孟德?tīng)柺褂媚P蛯?shí)驗(yàn)方法研究遺傳模式
3.2 The Monohybrid Cross Reveals How One Trait Is Transmitted from Generation to Generation
3.2 單因子雜交揭示了單一性狀世代傳遞的規(guī)律
3.3 Mendel’s Dihybrid Cross Generated a Unique F2 Ratio
3.3 孟德?tīng)栯p因子雜交產(chǎn)生獨(dú)特的F2 代比例
3.4 The Trihybrid Cross Demonstrates That Mendel’s Principles Apply to Inheritance of Multiple Traits
3.4 三因子雜交表明孟德?tīng)柖蛇m用于多性狀遺傳
3.5 Mendel’s Work Was Rediscovered in the Early Twentieth Century
3.5 孟德?tīng)柕墓ぷ髟?0 世紀(jì)初被重新發(fā)現(xiàn)
3.6 Independent Assortment Leads to Extensive Genetic Variation
3.6 自由組合產(chǎn)生廣泛的遺傳變異
3.7 Laws of Probability Help to Explain Genetic Events
3.7 概率理論有助于解釋遺傳學(xué)事件
3.8 Chi-Square Analysis Evaluates the Influence of Chance on Genetic Data
3.8 卡方分析評(píng)估偶然性對(duì)于遺傳數(shù)據(jù)的影響
3.9 Pedigrees Reveal Patterns of Inheritance of Human Trait
3.9 系譜圖揭示了人類性狀的遺傳模式
3.10 Tay-Sachs Disease: The Molecular Basis of a Recessive Disorder in Humans
3.10 泰-薩克斯。喝祟愲[性遺傳疾病的分子基礎(chǔ)
4 Modification of Mendelian Ratios
4 孟德?tīng)柋嚷实臄U(kuò)展
4.1 Alleles Alter Phenotypes in Different Ways
4.1 等位基因通過(guò)不同途徑影響表型
4.2 Geneticists Use a Variety of Symbols for Alleles
4.2 遺傳學(xué)家使用多種符號(hào)表示等位基因
4.3 Neither Allele Is Dominant in Incomplete, or Partial, Dominance
4.3 在不完全顯性中沒(méi)有等位基因是顯性的
4.4 In Codominance, the Influence of Both Alleles in a Heterozygote Is Clearly Evident
4.4 在共顯性中,雜合子兩種等位基因的影響十分明顯
4.5 Multiple Alleles of a Gene May Exist in a Population
4.5 生物種群中可能存在復(fù)等位基因
4.6 Lethal Alleles Represent Essential Genes
4.6 致死等位基因體現(xiàn)必需基因
4.7 Combinations of Two Gene Pairs with Two Modes of Inheritance Modify the 9:3:3:1 Ratio
4.7 兩對(duì)基因通過(guò)兩種遺傳模式進(jìn)行組合擴(kuò)展了9 ∶ 3 ∶ 3 ∶ 1 比例
4.8 Phenotypes Are Often Affected by More Than One Gene
4.8 表型通常由一種以上的基因共同決定
4.9 Complementation Analysis Can Determine if Two Mutations Causing a Similar Phenotype Are Alleles of the Same Gene
4.9 互補(bǔ)分析可以判斷引發(fā)相似表型的突變是否是同一基因的不同等位基因
4.10 Expression of a Single Gene May Have Multiple Effects
4.10 單基因表達(dá)可以產(chǎn)生多種基因效應(yīng)
4.11 X-Linkage Describes Genes on the X Chromosome
4.11 X連鎖描述位于X 染色體上的基因
4.12 In Sex-Limited and Sex-Influenced Inheritance, an Individual’s Gender Influences the Phenotype
4.12 在限性遺傳和從性遺傳中,個(gè)體的性別會(huì)影響表型
4.13 Genetic Background and the Environment Affect Phenotypic Expression
4.13 遺傳背景與環(huán)境會(huì)影響表型表達(dá)
4.14 Extranuclear Inheritance Modifies Mendelian Patterns
4.14 核外遺傳豐富了孟德?tīng)栠z傳模式
5 Sex Determination and Sex Chromosomes
5 性別決定與性染色體
5.1 X and Y Chromosomes Were First Linked to Sex Determination Early in the Twentieth Century
5.1 20世紀(jì)初,X和Y染色體首次確定與性別決定相關(guān)
5.2 The Y Chromosome Determines Maleness in Humans
5.2 Y染色體決定人類雄性發(fā)育
5.3 The Ratio of Males to Females in Humans Is Not 1.0
5.3 人類男女性別比并非1.0
5.4 Dosage Compensation Prevents Excessive Expression of X-Linked Genes in Humans and Other Mammals
5.4 劑量補(bǔ)償避免人類及其他哺乳類動(dòng)物X連鎖基因的過(guò)量表達(dá)
5.5 The Ratio of X Chromosomes to Sets of Autosomes Can Determine Sex
5.5 X染色體數(shù)目與常染色體組數(shù)的比值可以決定性別
5.6 Temperature Variation Controls Sex Determination in Reptiles
5.6 溫度變化控制爬行動(dòng)物的性別決定
6 Chromosome Mutations: Variation in Number and Arrangement
6 染色體突變: 染色體數(shù)目與結(jié)構(gòu)的變異
6.1 Variation in Chromosome Number: Terminology and Origin
6.1 染色體數(shù)目的變異:專業(yè)術(shù)語(yǔ)與起源
6.2 Monosomy and Trisomy Result in a Variety of Phenotypic Effects
6.2 單體和三體導(dǎo)致不同的表型效應(yīng)
6.3 Polyploidy, in Which More Than Two Haploid Sets of Chromosomes Are Present, Is Prevalent in Plants
6.3 含兩套以上單倍染色體組成的多倍體在植物界中廣泛存在
6.4 Variation Occurs in the Composition and Arrangement of Chromosomes
6.4 染色體結(jié)構(gòu)和排列順序的變異
6.5 A Deletion Is a Missing Region of a Chromosome
6.5 缺失是染色體上發(fā)生丟失的一段區(qū)域
6.6 A Duplication Is a Repeated Segment of a Chromosome
6.6 重復(fù)是多次出現(xiàn)的染色體片段
6.7 Inversions Rearrange the Linear Gene Sequence
6.7 倒位將線性基因序列進(jìn)行重排
6.8 Translocations Alter the Location of Chromosomal Segments in the Genome
6.8 易位改變了基因組中染色體片段的位置
6.9 Fragile Sites in Human Chromosomes Are Susceptible to Breakage
6.9 人類染色體的脆性位點(diǎn)
7 Linkage and Chromosome Mapping in Eukaryotes
7 真核生物的連鎖與染色體作圖
7.1 Genes Linked on the Same Chromosome Segregate Together
7.1 同一染色體上的連鎖基因相伴分離
7.2 Crossing Over Serves as the Basis of Determining the Distance between Genes during Mapping
7.2交換是染色體作圖中確定基因間距離的基礎(chǔ)
7.3 Determining the Gene Sequence during Mapping Requires the Analysis of Multiple Crossovers
7.3 染色體作圖中確定基因順序需要分析多交換事件
7.4 As the Distance between Two Genes Increases, Mapping Estimates Become More
Inaccurate6
7.4 隨著基因間距離的增加,染色體作圖的精確性將隨之下降
7.5 Chromosome Mapping Is Now Possible Using DNA Markers and Annotated Computer Databases
7.5 當(dāng)今,使用DNA 標(biāo)記和計(jì)算機(jī)注釋數(shù)據(jù)庫(kù)進(jìn)行染色體作圖已成為可能
7.6 Other Aspects of Genetic Exchange
7.6 關(guān)于遺傳交換的幾點(diǎn)補(bǔ)充
8 Genetic Analysis and Mapping in Bacteria and Bacteriophages
8 細(xì)菌和噬菌體的遺傳分析與染色體作圖
8.1 Bacteria Mutate Spontaneously and Are Easily Cultured
8.1 細(xì)菌能夠自發(fā)突變并易于培養(yǎng)
8.2 Genetic Recombination Occurs in Bacteria
8.2 細(xì)菌的基因重組
8.3 The F Factor Is an Example of a Plasmid
8.3 F 因子是一種質(zhì)粒
8.4 Transformation Is Another Process Leading to Genetic Recombination in Bacteria
8.4 轉(zhuǎn)化是細(xì)菌進(jìn)行遺傳重組的另一種方式
8.5 Bacteriophages Are Bacterial Viruses
8.5 噬菌體是細(xì)菌病毒
8.6 Transduction Is Virus-Mediated Bacterial DNA Transfer
8.6 轉(zhuǎn)導(dǎo)是由病毒介導(dǎo)的細(xì)菌DNA 轉(zhuǎn)移
9 Epigenetics
9 表觀遺傳學(xué)
9.1 Molecular Alterations to the Genome Create an Epigenome
9.1 基因組的分子變化產(chǎn)生了表觀基因組
9.2 Epigenetics and Monoallelic Gene Expression
9.2 表觀遺傳學(xué)與單等位基因表達(dá)
9.3 Epigenetics and Cancer
9.3 表觀遺傳學(xué)與癌癥
9.4 Epigenetic Traits Are Heritable
9.4 表觀遺傳性狀具有可遺傳性
9.5 Epigenome Projects and Databases
9.5 表觀基因組計(jì)劃與數(shù)據(jù)庫(kù)
10 Genetic Testing
10 遺傳檢測(cè)
10.1 Testing for Prognostic or Diagnostic Purposes
10.1 預(yù)后檢測(cè)和診斷檢測(cè)
10.2 Prenatal Genetic Testing to Screen for Conditions
10.2 用于遺傳篩查的產(chǎn)前遺傳檢測(cè)
10.3 Genetic Testing Using Allele-Specific Oligonucleotides
10.3 利用等位基因特異的寡核苷酸進(jìn)行遺傳檢測(cè)
10.4 Microarrays for Genetic Testing
10.4 用于遺傳診斷的微陣列
10.5 Genetic Analysis of Individual Genomes by DNA Sequencing
10.5 運(yùn)用DNA 測(cè)序進(jìn)行個(gè)體基因組遺傳分析
10.6 Genome-Wide Association Studies Identify Genome Variations That Contribute to Disease
10.6 全基因組關(guān)聯(lián)分析鑒定導(dǎo)致疾病的基因組變異
10.7 Genetic Testing and Ethical, Social, and Legal Questions
10.7 遺傳檢測(cè)與倫理、社會(huì)和法律問(wèn)題
11 Gene Therapy
11 基因治療
11.1 What Genetic Conditions Are Candidates for Treatment by Gene Therapy?
11.1 哪些遺傳疾病有望使用基因治療?
11.2 How Are Therapeutic Genes Delivered?
11.2 如何傳送治療基因?
11.3 The First Successful Gene Therapy Trial
11.3 首個(gè)基因治療成功案例
11.4 Gene Therapy Setbacks
11.4 基因治療的逆境
11.5 Recent Successful Trials by Conventional Gene Therapy Approaches
11.5 傳統(tǒng)基因治療技術(shù)的近期成功嘗試
11.6 Genome-Editing Approaches to Gene Therapy
11.6 基因治療中的基因編輯法
11.7 Future Challenges and Ethical Issues
11.7 未來(lái)的挑戰(zhàn)及倫理問(wèn)題
12 Advances in Neurogenetics: The Study of Huntington Disease
12 神經(jīng)遺傳學(xué)進(jìn)展:亨廷頓病的研究
12.1 The Search for the Huntington Gene
12.1 尋找亨廷頓病基因
12.2 The HTT Gene and Its Protein Product
12.2 HTT 基因與其蛋白質(zhì)產(chǎn)物
12.3 Molecular and Cellular Alterations in Huntington Disease
12.3 亨廷頓病的分子變化和細(xì)胞變化
12.4 Transgenic Animal Models of Huntington Disease
12.4 亨廷頓病的轉(zhuǎn)基因動(dòng)物模型
12.5 Cellular and Molecular Approaches to Therapy
12.5 治療的細(xì)胞生物學(xué)和分子生物學(xué)方法
13 DNA Forensics
13 DNA 法醫(yī)學(xué)
13.1 DNA Profiling Methods
13.1 DNA 分析方法
13.2 Interpreting DNA Profiles
13.2 DNA 圖譜詮釋
13.3 Technical and Ethical Issues Surrounding DNA Profiling
13.3 圍繞DNA 分析的技術(shù)與倫理問(wèn)題
14 Genetically Modified Foods
14 轉(zhuǎn)基因食品
14.1 What Are GM Foods?
14.1 什么是轉(zhuǎn)基因食品?
14.2 Methods Used to Create GM Plants
14.2 構(gòu)建GM 植物的方法
14.3 GM Foods Controversies
14.3 GM 食品之爭(zhēng)
14.4 The Future of GM Foods
14.4 GM 食品的未來(lái)
15 Genomics and Precision Medicine
15 基因組學(xué)與精準(zhǔn)醫(yī)療
15.1 Pharmacogenomics
15.1 藥物基因組學(xué)
15.2 Precision Oncology
15.2 精準(zhǔn)腫瘤學(xué)
15.3 Precision Medicine and Disease Diagnostics
15.3 精準(zhǔn)醫(yī)療與疾病診斷
15.4 Technical, Social, and Ethical Challenges
15.4 技術(shù)、社會(huì)和倫理的挑戰(zhàn)