矩陣理論作為一種基本的數(shù)學工具,在數(shù)學與其他科學技術領域都有廣泛應用。本書從數(shù)學分析的角度闡述了矩陣分析的經典和現(xiàn)代方法。主要內容有:特征值、特征向量和相似性;酉相似和酉等價;相似標準型和三角分解;Hermite矩陣、對稱矩陣和酉相合;向量范數(shù)和矩陣范數(shù);特征值的估計和擾動;正定矩陣和半正定矩陣;正矩陣和非負矩陣。第2版進行了全面的修訂和更新,用新的小節(jié)介紹了奇異值、CS分解和Weyr范式等其他內容,并附有1100多個線性代數(shù)課程的問題和練習。
線性代數(shù)和矩陣理論是數(shù)學和自然科學的基本工具,同時也是科學研究的沃土。本書是矩陣理論方面的經典著作,從數(shù)學分析的角度闡述了矩陣分析的經典和現(xiàn)代方法。主要內容有:特征值、特征向量和相似性;酉相似和酉等價;相似標準型和三角分解;Hermite矩陣、對稱矩陣和酉相合;向量范數(shù)和矩陣范數(shù);特征值的估計和擾動;正定矩陣和半正定矩陣;正矩陣和非負矩陣。第2版對第1版進行了全面的修訂、更新和擴展。這一版不僅對基礎線性代數(shù)和矩陣理論做了全面的總結,而且還新增了奇異值、CS分解和Weyr標準型的相關內容,擴展了與逆矩陣和分塊矩陣相關的內容,介紹了Jordan標準型的新應用。此外,還附有1100多個問題和練習,并且給出了一些提示,以幫助讀者提高解決數(shù)學問題的能力。本書可以用作本科生或者研究生的教材,也可用作數(shù)學工作者和科技人員的參考書。
Preface to the Second Edition page
Preface to the First Edition
0 Review and Miscellanea
0.0 Introduction
0.1 Vector spaces
0.2 Matrices
0.3 Determinants
0.4 Rank
0.5 Nonsingularity
0.6 The Euclidean inner product and norm
0.7 Partitioned sets and matrices
0.8 Determinants again
0.9 Special types of matrices
0.10 Change of basis
0.11 Equivalence relations
1 Eigenvalues, Eigenvectors, and Similarity
1.0 Introduction
1.1 The eigenvalue–eigenvector equation
1.2 The characteristic polynomial and algebraic multiplicity
1.3 Similarity
1.4 Left and right eigenvectors and geometric multiplicity
2 Unitary Similarity and Unitary Equivalence
2.0 Introduction
2.1 Unitary matrices and the QR factorization
2.2 Unitary similarity
2.3 Unitary and real orthogonal triangularizations
2.4 Consequences of Schur’s triangularization theorem
2.5 Normal matrices
2.6 Unitary equivalence and the singular value decomposition
2.7 The CS decomposition
3 Canonical Forms for Similarity and Triangular Factorizations
3.0 Introduction
3.1 The Jordan canonical form theorem
3.2 Consequences of the Jordan canonical form
3.3 The minimal polynomial and the companion matrix
3.4 The real Jordan and Weyr canonical forms
3.5 Triangular factorizations and canonical forms
4 Hermitian Matrices, Symmetric Matrices, and Congruences
4.0 Introduction
4.1 Properties and characterizations of Hermitian matrices
4.2 Variational characterizations and subspace intersections
4.3 Eigenvalue inequalities for Hermitian matrices
4.4 Unitary congruence and complex symmetric matrices
4.5 Congruences and diagonalizations
4.6 Consimilarity and condiagonalization
5 Norms for Vectors and Matrices
5.0 Introduction
5.1 Definitions of norms and inner products
5.2 Examples of norms and inner products
5.3 Algebraic properties of norms
5.4 Analytic properties of norms
5.5 Duality and geometric properties of norms
5.6 Matrix norms
5.7 Vector norms on matrices
5.8 Condition numbers: inverses and linear systems
6 Location and Perturbation of Eigenvalues
6.0 Introduction
6.1 Gergorin discs
6.2 Gergorin discs – a closer look
6.3 Eigenvalue perturbation theorems
6.4 Other eigenvalue inclusion sets
7 Positive Definite and Semidefinite Matrices
7.0 Introduction
7.1 Definitions and properties
7.2 Characterizations and properties
7.3 The polar and singular value decompositions
7.4 Consequences of the polar and singular value decompositions
7.5 The Schur product theorem
7.6 Simultaneous diagonalizations, products, and convexity
7.7 The Loewner partial order and block matrices
7.8 Inequalities involving positive definite matrices
8 Positive and Nonnegative Matrices
8.0 Introduction
8.1 Inequalities and generalities
8.2 Positive matrices
8.3 Nonnegative matrices
8.4 Irreducible nonnegative matrices
8.5 Primitive matrices
8.6 A general limit theorem
8.7 Stochastic and doubly stochastic matrices
Appendix A Complex Numbers
Appendix B Convex Sets and Functions
Appendix C The Fundamental Theorem of Algebra
Appendix D Continuity of Polynomial Zeroes and Matrix Eigenvalues
Appendix E Continuity, Compactness, andWeierstrass’s Theorem
Appendix F Canonical Pairs
References
Notation
Hints for Problems
Index