本書主要圍繞AI系統(tǒng)的理論基礎(chǔ)與技術(shù)基礎(chǔ)知識(shí)展開,結(jié)合實(shí)例進(jìn)行介紹,旨在讓讀者了解AI系統(tǒng)的來龍去脈,形成對(duì)AI系統(tǒng)的系統(tǒng)化與層次化的初步理解,掌握AI系統(tǒng)基本理論、技術(shù)、實(shí)際應(yīng)用及研究方向,為后續(xù)從事具體的學(xué)習(xí)研究工作和項(xiàng)目開發(fā)工作奠定基礎(chǔ)。本書首先介紹AI的歷史、現(xiàn)狀與發(fā)展及AI系統(tǒng)的基本知識(shí),后分為AI硬件與體系
本書是一本全面介紹人工智能領(lǐng)域的專業(yè)教材。分為八章,人工智能概述、人工智能數(shù)學(xué)基礎(chǔ)、人工智能基礎(chǔ)模型、人工智能編程框架、視覺智能處理技術(shù)、語言智能處理技術(shù)、語音智能處理技術(shù)和人工智能的未來發(fā)展趨勢(shì)。首先介紹人工智能的相關(guān)基礎(chǔ)知識(shí),包括人工智能相關(guān)概念、人工智能的數(shù)學(xué)基礎(chǔ)、人工智能的模型基礎(chǔ)以及相關(guān)編程基礎(chǔ),然后分別介紹
因素空間是信息、智能和數(shù)據(jù)科學(xué)的數(shù)學(xué)基礎(chǔ)理論。本書將介紹因素空間如何將智能生成的統(tǒng)一機(jī)制落實(shí)到各行各業(yè),開展全民智能孵化的洛神工程。本書主要內(nèi)容包括:介紹因素的范式特質(zhì)和智能孵化洛神工程的內(nèi)容;介紹因素空間對(duì)智能生成機(jī)制的落實(shí)細(xì)則;介紹因素顯隱的理論,將現(xiàn)有人工智能數(shù)學(xué)算法歸結(jié)到回歸和優(yōu)化兩大方面,突出支持向量機(jī)與因素
在這本書中,作者著力討論了幾種獲取機(jī)器學(xué)習(xí)和數(shù)據(jù)挖掘算法性能的相關(guān)知識(shí)的方法。作者展示了如何再次利用這些知識(shí)來選擇、組合、編撰和調(diào)整算法和模型,從而為數(shù)據(jù)挖掘提供更快、更有效的解決方案,幫助研究人員改進(jìn)算法,并開發(fā)能夠自我改進(jìn)的學(xué)習(xí)系統(tǒng)。本書的新版在舊版基礎(chǔ)上就內(nèi)容做了非常大的擴(kuò)充。作者介紹了最新的自動(dòng)機(jī)器學(xué)習(xí)方法,闡
本書是作者對(duì)自2008年起系統(tǒng)分析"機(jī)器能否獲得認(rèn)知發(fā)展能力"這一問題而不得不先訴諸于"人工智能基礎(chǔ)問題"或"認(rèn)知哲學(xué)"方面的研究其結(jié)果的總結(jié)。本書立論開宗明義:將機(jī)器認(rèn)知發(fā)展問題簡(jiǎn)化為"物理機(jī)器的概念產(chǎn)生問題"。據(jù)此,作者遂建立起自己對(duì)"概念體系"的理論和對(duì)"心靈哲學(xué)"的基本觀念,之后使用符合哲學(xué)討論習(xí)慣的方式進(jìn)行論
教育信息化促進(jìn)了教育測(cè)評(píng)理念的變革,人工智能時(shí)代的教育更加關(guān)注以智能技術(shù)驅(qū)動(dòng)的學(xué)習(xí)者認(rèn)知分析與個(gè)性化學(xué)習(xí)的訴求。本書遵循"理論-方法-應(yīng)用"研究范式,探索人工智能時(shí)代的學(xué)習(xí)認(rèn)知分析的新理論與新方法。
本書針對(duì)推薦系統(tǒng)中的二部圖、社交網(wǎng)絡(luò)和知識(shí)圖譜的圖結(jié)構(gòu)模式,研究基于圖表示學(xué)習(xí)的深度推薦系統(tǒng)。通過挖掘圖信息中的隱性關(guān)系和高階關(guān)系,使用圖學(xué)習(xí)的方式探索用戶和產(chǎn)品的潛在關(guān)聯(lián),彌補(bǔ)相關(guān)推薦系統(tǒng)研究在挖掘用戶之間或者產(chǎn)品之間隱性關(guān)系方面的不足,形成一系列合理而且有效的推薦技術(shù)。增加推薦系統(tǒng)輸入的多樣性,運(yùn)用社交網(wǎng)絡(luò)和知識(shí)圖
圖像融合技術(shù)可將多源圖像的互補(bǔ)特征進(jìn)行綜合,以得到更加完整和準(zhǔn)確的場(chǎng)景描述,從而彌補(bǔ)單一傳感器單幅圖像的不足,是一種廣泛應(yīng)用的圖像預(yù)處理技術(shù),如多攝像頭拍照、微光夜視、醫(yī)學(xué)診斷、遙感等應(yīng)用領(lǐng)域。本書以多源圖像融合技術(shù)為主要內(nèi)容,在研究圖像尺度分析、遷移學(xué)習(xí)、深度學(xué)習(xí)算法與模型的基礎(chǔ)上,針對(duì)多聚焦圖像融合、多模態(tài)醫(yī)學(xué)圖像
數(shù)系的擴(kuò)充始終貫穿于數(shù)學(xué)理論的發(fā)展之中. 本書利用交互式定理證明工具Coq,在Morse-Kelley公理化集合論形式化系統(tǒng)下, 給出中國(guó)科學(xué)與技術(shù)大學(xué)汪芳庭教授在其《數(shù)學(xué)基礎(chǔ)》中采用算術(shù)超濾分?jǐn)?shù)構(gòu)造實(shí)數(shù)的機(jī)器證明系統(tǒng),包括超濾空間與算術(shù)超濾的基本概念、超濾變換以及用算術(shù)超濾構(gòu)造算術(shù)模型的形式化實(shí)現(xiàn),構(gòu)建了非標(biāo)準(zhǔn)實(shí)數(shù)模
本書主要包含以下內(nèi)如:最優(yōu)化問題的簡(jiǎn)介,凸分析基礎(chǔ),無約束優(yōu)化的理論及線搜索算法框架,信賴域算法,線搜索收斂性分析及收斂速度分析,半光滑牛頓算法,共軛梯度算法,約束優(yōu)化理論及延伸理論,罰方法,增廣拉格朗日算法及算法在實(shí)際問題(支持向量機(jī)模型、超圖匹配)中的應(yīng)用。本書對(duì)知識(shí)點(diǎn)的分析緊密結(jié)合當(dāng)前研究前沿問題,并通過對(duì)應(yīng)用問