天元基金影印數(shù)學(xué)叢書:實數(shù)學(xué)分析
定 價:34.1 元
- 作者:[美] 皮尤(Pugh C.C) 著
- 出版時間:2009/2/1
- ISBN:9787040255348
- 出 版 社:高等教育出版社
- 中圖法分類:O17
- 頁碼:437
- 紙張:膠版紙
- 版次:1
- 開本:16開
作者Pugh在伯克利大學(xué)講授數(shù)學(xué)分析課程30多年之久的基礎(chǔ)上編寫而成,書中語言表述生動活潑、通俗易懂,引用了很多有價值的例子以及來自Dieudonne,Littlewood和Osserman等幾位數(shù)學(xué)家的評論,還精心挑選了500多個精彩的練習(xí)題!秾崝(shù)學(xué)分析(影印版)》內(nèi)容包括實數(shù)、拓撲知識初步、實變函數(shù)、函數(shù)空間、多元微積分、Lebesgue積分理論等,其中多元微積分的講法較為接近當(dāng)前數(shù)學(xué)界常用的語言,將會對我國數(shù)學(xué)分析的教學(xué)產(chǎn)生積極的影響。
為了更好的借鑒國外數(shù)學(xué)教育與研究的成功經(jīng)驗,促進我國的數(shù)學(xué)教育與研究事業(yè)的發(fā)展,提高高等學(xué)校數(shù)學(xué)教育教學(xué)質(zhì)量,本著“為我國熱愛數(shù)學(xué)的 青年創(chuàng)造一個較好的學(xué)習(xí)環(huán)境”這一宗旨,天元基金贊助出版“天元基金影印數(shù)學(xué)叢書”。
該叢書主要包含國外反映近代數(shù)學(xué)發(fā)展的純數(shù)學(xué)與應(yīng)用數(shù)學(xué)方面的優(yōu)秀書籍,天元基金邀請國內(nèi)各個方向的知名數(shù)學(xué)家參與選題的工作,經(jīng)專家遴選,推薦,由高等教育出版社影印出版。為了提高我國數(shù)學(xué)研究生教學(xué)的水平,暫把選書的 目標確定在研究生教材上。當(dāng)然,有的書也可以作為本科生教材或參考書,有的書則介于研究生教材與專著之間。
歡迎各方專家,讀者對本叢書的選題,印刷,銷售等工作提出批評和建議。
1 Real Numbers
1 Preliminaries
2 Cuts
3 Euclidean Space
4 Cardinality
5* Comparing Cardinalities
6* The Skeleton of Calculus
Exercises
2 A Taste of Topology
1 Metric Space Concepts
2 Compactness
3 Connectedness
4 Coverings
5 Cantor Sets
6* Cantor Set Lore
7* Completion
Exercises
3 Functions of a Real Variable
1 Differentiation
2 Riemann Integration
3 Series
Exercises
4 Function Spaces
1 Uniform Convergence and C0[a, b]
2 Power Series
3 Compactness and Equicontinuity in CO
4 Uniform Approximation in Co
5 Contractions and ODEs
6* Analytic Functions
7* Nowhere Differentiable Continuous Functions
8* Spaces of Unbounded Functions
Exercises
5 Multivariable Calculus
1 Linear Algebra
2 Derivatives
3 Higher derivatives
4 Smoothness Classes
5 Implicit and Inverse Functions
6* The Rank Theorem
7* Lagrange Multipliers
8 Multiple Integrals
9 Differential Forms
10 The General Stokes Formula
11* The Brouwer Fixed Point Theorem
Appendix A: Perorations of Dieudonne
Appendix B: The History of Cavalieris Principle
Appendix C: A Short Excursion into
the Complex Field
Appendix D: Polar Form
Appendix E: Determinants
Exercises
6 Lebesgue Theory
1 Outer measure
2 Measurability
3 Regularity
4 Lebesgue integrals
5 Lebesgue integrals as limits
6 Italian Measure Theory
7 Vitali coverings and density points
8 Lebesgues Fundamental Theorem of Calculus
9 Lebesgues Last Theorem
Appendix A: Translations and Nonmeasurable sets
Appendix B: The Banach-Tarski Paradox
Appendix C: Riemann integrals as undergraphs
Appendix D: Littlewoods Three Principles
Appendix E: Roundness
Appendix F: Money
Suggested Reading
Bibliography
Exercises
Index