有限群基礎(chǔ)理論及其在物理與化學(xué)中的應(yīng)用
本書根據(jù)張乾二院士長(zhǎng)期為廈門大學(xué)化學(xué)系研究生開設(shè)的群論課程講義整理而成。本書主要介紹有限群的基礎(chǔ)知識(shí),特別是群的表示理論、分子對(duì)稱群、置換群的不可約表示等,還介紹群論在分子軌道理論、晶體結(jié)構(gòu)、分子光譜及基本粒子中的應(yīng)用。各章均附有習(xí)題供讀者參考使用。
更多科學(xué)出版社服務(wù),請(qǐng)掃碼獲取。
目錄
前言
第1章 群論基礎(chǔ) 1
1.1 基本概念 1
1.1.1 群的定義 1
1.1.2 同構(gòu)關(guān)系 2
1.1.3 子群 5
1.1.4 循環(huán)子群 6
1.2 抽象群的結(jié)構(gòu) 6
1.2.1 群的乘法表 6
1.2.2 拉格朗日定理 7
1.2.3 群的陪集分解 7
1.2.4 抽象群結(jié)構(gòu) 8
1.3 群的類分解 10
1.3.1 共軛類 10
1.3.2 類的幾何意義 12
1.3.3 共軛子群 13
1.4 商群與同態(tài) 14
1.4.1 商群 14
1.4.2 同態(tài) 15
1.5 群的直積 16
1.5.1 直積群 16
1.5.2 直積群的類 17
1.6 Cayley定理 17
參考文獻(xiàn) 19
習(xí)題1 19
第2章 有限群的表示理論 21
2.1 線性向量空間 21
2.1.1 線性向量空間的定義 21
2.1.2 線性相關(guān)與空間的維數(shù) 22
2.1.3 基向量 (坐標(biāo)系) 與坐標(biāo) 23
2.1.4 坐標(biāo)系變換與坐標(biāo)變換 26
2.2 線性算子 26
2.2.1 線性算子定義 26
2.2.2 算子作用下的變換 27
2.2.3 坐標(biāo)變換引起表示矩陣的變化 29
2.2.4 算子的乘法及變換 30
2.2.5 空間的變換與算子作用 31
2.3 群的表示 32
2.3.1 群表示的定義 32
2.3.2 等價(jià)表示 33
2.3.3 構(gòu)造表示的一種方法 37
2.3.4 對(duì)稱操作作用下的波函數(shù) 39
2.3.5 波函數(shù)為線性算子的不變子空間 40
2.4 酉空間和酉算子 41
2.4.1 酉空間的定義 41
2.4.2 基向量正交歸一 41
2.4.3 基向量的酉變換 42
2.4.4 酉算子 43
2.4.5 酉表示 45
2.5 可約表示的約化及判據(jù) 46
2.5.1 可約表示 46
2.5.2 表示的約化 48
2.5.3 約化的充分必要條件 50
2.5.4 Schur引理 51
2.6 正交定理 54
2.6.1 不可約表示正交性 54
2.6.2 不可約表示的特征標(biāo) 56
2.6.3 特征標(biāo)的性質(zhì) 58
2.6.4 應(yīng)用 60
2.7 正則表示及其分解 62
2.7.1 正則表示 62
2.7.2 正則表示的分解 64
2.7.3 兩個(gè)表示含有相同的不可約表示 66
2.7.4 構(gòu)造特征標(biāo)表 67
2.8 群表示的直積 69
2.8.1 外積 69
2.8.2 內(nèi)積 72
2.8.3 Clebsch-Gordan系數(shù) 75
2.9 投影算子 76
2.9.1 投影算子定義 76
2.9.2 投影算子性質(zhì) 78
2.9.3 投影算子的意義 78
2.9.4 應(yīng)用:構(gòu)造環(huán)丙烯基的軌道 79
參考文獻(xiàn) 80
習(xí)題2 81
第3章 分子對(duì)稱點(diǎn)群的不可約表示 83
3.1 函數(shù)的旋轉(zhuǎn)變換 83
3.2 阿貝爾群的不可約表示 84
3.2.1 循環(huán)群 84
3.2.2 V群 86
3.3 Cnv和Dn點(diǎn)群的不可約表示 87
3.3.1 C3v和 D3點(diǎn)群 87
3.3.2 C4v和D4點(diǎn)群 88
3.3.3 Cnv和Dn點(diǎn)群 89
3.4 Cnh和Dnh點(diǎn)群的不可約表示 91
3.5 Dnd點(diǎn)群的不可約表示 93
3.5.1 n為奇數(shù) 93
3.5.2 n為偶數(shù) 93
3.6 高階群的不可約表示 95
3.6.1 正四面體群 95
3.6.2 O群與Td群 97
3.6.3 I群和Ih群 99
3.7 C1v和D1h群的不可約表示 100
參考文獻(xiàn) 102
習(xí)題3 102
第4章 置換群 103
4.1 置換群引論 103
4.1.1 置換群的定義 103
4.1.2 置換群的性質(zhì) 104
4.2 置換群不可約表示 105
4.2.1 不可約表示分類 105
4.2.2 楊圖與楊表 106
4.3 置換群表示的特征標(biāo) 107
4.3.1 曲長(zhǎng) 107
4.3.2 分支定律與特征標(biāo) 108
4.4 共軛表示 110
4.5 不可約表示的基函數(shù) 111
4.6 標(biāo)準(zhǔn)正交矩陣元 112
4.7 標(biāo)準(zhǔn)投影算符與楊算符 115
4.7.1 投影算符和楊算符 115
4.7.2 兩個(gè)不可約表示的直積 117
4.8 一種新的標(biāo)準(zhǔn)表示矩陣計(jì)算方法 118
參考文獻(xiàn) 120
習(xí)題4 120
第5章 對(duì)稱性與物質(zhì)結(jié)構(gòu) 122
5.1 波函數(shù)作不可約表示的基 122
5.1.1 波函數(shù)可作不可約表示的基函數(shù) 122
5.1.2 不可約基函數(shù)的構(gòu)造 123
5.1.3 D3群的不可約基 124
5.2 矩陣元的計(jì)算 126
5.2.1 維格訥-?ǘɡ 126
5.2.2 矩陣元的約化 127
5.2.3 苯分子能量矩陣的約化 128
5.3 晶體中的空間群 130
5.3.1 晶體的對(duì)稱性 130
5.3.2 晶體點(diǎn)群 130
5.3.3 晶系與布拉維格子 131
5.3.4 空間群分類與符號(hào) 132
5.3.5 等效點(diǎn)系 135
5.3.6 晶體的壓電效應(yīng) 139
5.3.7 晶體相變與對(duì)稱性 140
5.4 核物理學(xué)中的對(duì)稱性 142
5.4.1 基本作用力 142
5.4.2 同位旋對(duì)稱性 142
5.4.3 基本粒子和SU3群 145
5.4.4 粒子的多重態(tài) 149
參考文獻(xiàn) 152
習(xí)題5 153
第6章 分子軌道理論中的應(yīng)用 155
6.1 對(duì)稱性匹配軌道的構(gòu)造 155
6.1.1 投影算符構(gòu)造環(huán)丁二烯電子對(duì)稱軌道 155
6.1.2 休克爾的4n+2規(guī)則 156
6.1.3 四次甲基環(huán)丁烷 157
6.1.4 萘分子 158
6.2 先定系數(shù)法 161
6.2.1 鏈型分子 161
6.2.2 環(huán)形分子 163
6.2.3 四亞甲基環(huán)丁烷 165
6.2.4 復(fù)雜體系 168
6.3 ABn型分子的對(duì)稱性匹配軌道和雜化軌道 170
6.3.1 用投影算符獲得對(duì)稱性匹配軌道 171
6.3.2 生成軌道法 173
6.4 群重疊法判斷軌道成鍵性質(zhì) 174
6.4.1 群重疊法 174
6.4.2 鈮團(tuán)簇成鍵性質(zhì)判斷 176
6.4.3 復(fù)合多面體Fe4S4成鍵性質(zhì)判斷 178
6.5 前線軌道與分子軌道對(duì)稱守恒 180
6.5.1 前線軌道理論 180
6.5.2 分子軌道對(duì)稱守恒原理 181
參考文獻(xiàn) 184
習(xí)題6 184
第7章 對(duì)稱性與分子光譜 186
7.1 量子力學(xué)本征函數(shù)及其對(duì)稱性 186
7.2 非零矩陣元的檢驗(yàn) 187
7.2.1 能量矩陣元 188
7.2.2 光譜躍遷概率 188
7.3 振動(dòng)模式分析 191
7.3.1 NH3簡(jiǎn)正振動(dòng)模式分析 192
7.3.2 BX3簡(jiǎn)正振動(dòng)模式分析 193
7.3.3 CO2簡(jiǎn)正振動(dòng)模式分析 194
7.4 多原子分子紅外和拉曼光譜 197
7.4.1 H2O振動(dòng)光譜 197
7.4.2 乙烯振動(dòng)光譜 197
7.4.3 四面體 CH4 振動(dòng)光譜 199
7.5 電子光譜 201
參考文獻(xiàn) 203
習(xí)題7 203
附錄 205
A 幾種常用的矩陣 205
B 群的特征標(biāo)表 207
C 230 個(gè)空間群 211
D 基本粒子的波函數(shù) 213
E 部分習(xí)題參考答案 214