關(guān)于我們
書(shū)單推薦
新書(shū)推薦

具有尖孤子解的新可積模型以及弧子方程解和是代數(shù)幾何構(gòu)造

具有尖孤子解的新可積模型以及弧子方程解和是代數(shù)幾何構(gòu)造

定  價(jià):36 元

叢書(shū)名:國(guó)家自然科學(xué)基金研究專著

        

  • 作者:王輝 著
  • 出版時(shí)間:2019/6/1
  • ISBN:9787550924154
  • 出 版 社:黃河水利出版社
  • 中圖法分類:O241.7 
  • 頁(yè)碼:106
  • 紙張:膠版紙
  • 版次:1
  • 開(kāi)本:16開(kāi)
9
7
9
8
2
7
4
5
1
5
5
0
4
  《具有尖孤子解的新可積模型以及弧子方程解和是代數(shù)幾何構(gòu)造》主要分為兩個(gè)部分:其一,借助于Lenard遞推序列,推導(dǎo)出分別與一個(gè)4x4、兩個(gè)3x3矩陣譜問(wèn)題相聯(lián)系的孤子方程族,對(duì)于某些方程族或者方程,給出了它們的廣義Hamilton結(jié)構(gòu)和無(wú)窮守恒律;其二,給出了相應(yīng)孤子方程的精確解。其中第2章,給出了相應(yīng)CH型方程的尖孤子解;第4、5章基于三角曲線理論及代數(shù)幾何知識(shí),構(gòu)造出了相應(yīng)孤子方程的代數(shù)幾何解。
  第2章中,通過(guò)引入負(fù)冪流,得到三類CH型方程。其中兩個(gè)具有N-peakon形式解。借助廣義函數(shù)6,給出了Ⅳ-peakon解所滿足的動(dòng)力系統(tǒng)。
  孤子方程的代數(shù)幾何解揭示解的內(nèi)部結(jié)構(gòu),描述了非線性現(xiàn)象的擬周期行為!毒哂屑夤伦咏獾男驴煞e模型以及弧子方程解和是代數(shù)幾何構(gòu)造》第3章主要介紹黎曼面以及Theta函數(shù)的相關(guān)知識(shí),其中的概念、引理以及定理可以更好地幫助理解三角曲線。第4章和第5章,采取一套很系統(tǒng)的方法去構(gòu)造三角曲線,再通過(guò)引入適當(dāng)?shù)腂aker-Akhiezer函數(shù)、亞純函數(shù)及橢圓變量,從而將孤子方程分解為可解的Dubrovin-type常微分方程組。進(jìn)一步,根據(jù)亞純函數(shù)及Baker-Akhiezer函數(shù)零點(diǎn)和極點(diǎn)的性質(zhì),定義第二類和第三類Abel微分,結(jié)合Riemann定理及Riemann-Roch定理,得到了亞純函數(shù)以及Baker-Akhiezer函數(shù)的黎曼Theta函數(shù)表示。最后,再結(jié)合亞純函數(shù)以及Baker-Akhiezer函數(shù)的漸近性質(zhì),給出了孤子方程族的代數(shù)幾何解。
 你還可能感興趣
 我要評(píng)論
您的姓名   驗(yàn)證碼: 圖片看不清?點(diǎn)擊重新得到驗(yàn)證碼
留言內(nèi)容