關(guān)于我們
書單推薦
新書推薦
|
自動控制原理與設(shè)計(第八版)(英文版) 讀者對象:本書可作為高等院校自動化類、電氣類、儀器類、機械類等相關(guān)專業(yè)高年級本科生的雙語教學(xué)教材,還可供從事半導(dǎo)體制造、汽車控制、宇航自動化、運動控制、機器人、精密儀器等相關(guān)領(lǐng)域的教師和科技人員參考。
本書是自動控制領(lǐng)域的經(jīng)典著作,以自動控制系統(tǒng)的分析和設(shè)計為主線,在回顧自動控制系統(tǒng)動態(tài)響應(yīng)和反饋控制的基本特性基礎(chǔ)上,重點介紹了自動控制系統(tǒng)的3種主流設(shè)計方法:根軌跡設(shè)計方法、頻率響應(yīng)設(shè)計方法和狀態(tài)空間設(shè)計方法。此外,還闡述了非線性系統(tǒng)的分析與設(shè)計,給出了汽車發(fā)動機、無人機、半導(dǎo)體晶圓制造等應(yīng)用的控制系統(tǒng)設(shè)計實例。全書在闡述自動控制原理和設(shè)計方法的過程中,適時地穿插了MATLAB仿真源代碼和仿真實驗結(jié)果。
Gene F. Franklin,美國斯坦福大學(xué)電氣工程系教授。國際著名控制學(xué)家,IEEE終身會士。于1955年在哥倫雙亞大學(xué)獲得博士學(xué)位,曾任斯坦福大學(xué)電氣工程系主任、IEEE控制系統(tǒng)學(xué)會理事、副主席,其研究領(lǐng)域覆蓋了控制和各個方面。2005年因其對多個控制領(lǐng)域的基礎(chǔ)性貢獻而美國自動控制學(xué)會最高獎Bellman獎。
Gene F. Franklin,美國斯坦福大學(xué)電氣工程系教授。國際著名控制學(xué)家,IEEE終身會士。于1955年在哥倫雙亞大學(xué)獲得博士學(xué)位,曾任斯坦福大學(xué)電氣工程系主任、IEEE控制系統(tǒng)學(xué)會理事、副主席,其研究領(lǐng)域覆蓋了控制和各個方面。2005年因其對多個控制領(lǐng)域的基礎(chǔ)性貢獻而美國自動控制學(xué)會最高獎Bellman獎。
Chapter 1 An Overview and Brief History of Feedback Control
A Perspective on Feedback Control Chapter Overview 1.1 A Simple Feedback System 1.2 A First Analysis of Feedback 1.3 Feedback System Fundamentals 1.4 A Brief History 1.5 An Overview of the Book Summary Review Questions Problems Chapter 2 Dynamic Models A Perspective on Dynamic Models Chapter Overview 2.1 Dynamics of Mechanical Systems 2.1.1 Translational Motion 2.1.2 Rotational Motion 2.1.3 Combined Rotation and Translation 2.1.4 Complex Mechanical Systems (W)① 2.1.5 Distributed Parameter Systems 2.1.6 Summary: Developing Equations of Motion for Rigid Bodies 2.2 Models of Electric Circuits 2.3 Models of Electromechanical Systems 2.3.1 Loudspeakers 2.3.2 Motors △ 2.3.3 Gears △ 2.4 Heat and Fluid-Flow Models 2.4.1 Heat Flow 2.4.2 Incompressible Fluid Flow 2.5 Historical Perspective Summary Review Questions Problems Chapter 3 Dynamic Response A Perspective on System Response Chapter Overview 3.1 Review of Laplace Transforms 3.1.1 Response by Convolution 3.1.2 Transfer Functions and Frequency Response 3.1.3 The ?_ Laplace Transform 3.1.4 Properties of Laplace Transforms 3.1.5 Inverse Laplace Transform by Partial-Fraction Expansion 3.1.6 The Final Value Theorem 3.1.7 Using Laplace Transforms to Solve Differential Equations 3.1.8 Poles and Zeros 3.1.9 Linear System Analysis Using Matlab 3.2 System Modeling Diagrams 3.2.1 The Block Diagram 3.2.2 Block-Diagram Reduction Using Matlab 3.2.3 Mason’s Rule and the Signal Flow Graph (W) 3.3 Effect of Pole Locations 3.4 Time-Domain Specifications 3.4.1 Rise Time 3.4.2 Overshoot and Peak Time 3.4.3 Settling Time 3.5 Effects of Zeros and Additional Poles 3.6 Stability 3.6.1 Bounded Input-Bounded Output Stability 3.6.2 Stability of LTI Systems 3.6.3 Routh’s Stability Criterion △ 3.7 Obtaining Models from Experimental Data: System Identification (W) △ 3.8 Amplitude and Time Scaling (W) 3.9 Historical Perspective Summary Review Questions Problems Chapter 4 A First Analysis of Feedback A Perspective on the Analysis of Feedback Chapter Overview 4.1 The Basic Equations of Control 4.1.1 Stability 4.1.2 Tracking 4.1.3 Regulation 4.1.4 Sensitivity 4.2 Control of Steady-State Error to Polynomial Inputs: System Type 4.2.1 System Type for Tracking 4.2.2 System Type for Regulation and Disturbance Rejection 4.3 The Three-Term Controller: PID Control 4.3.1 Proportional Control (P) 4.3.2 Integral Control (I) 4.3.3 Derivative Control (D) 4.3.4 Proportional Plus Integral Control (PI) 4.3.5 PID Control 4.3.6 Ziegler-Nichols Tuning of the PID Controller 4.4 Feedforward Control by Plant Model Inversion △ 4.5 Introduction to Digital Control (W) △ 4.6 Sensitivity of Time Response to Parameter Change (W) 4.7 Historical Perspective Summary Review Questions Problems Chapter 5 The Root-Locus Design Method A Perspective on the Root-Locus Design Method Chapter Overview 5.1 Root Locus of a Basic Feedback System 5.2 Guidelines for Determining a Root Locus 5.2.1 Rules for Determining a Positive (180°) Root Locus 5.2.2 Summary of the Rules for Determining a Root Locus 5.2.3 Selecting the Parameter Value 5.3 Selected Illustrative Root Loci 5.4 Design Using Dynamic Compensation 5.4.1 Design Using Lead Compensation 5.4.2 Design Using Lag Compensation 5.4.3 Design Using Notch Compensation △ 5.4.4 Analog and Digital Implementations (W) 5.5 Design Examples Using the Root Locus 5.6 Extensions of the Root-Locus Method 5.6.1 Rules for Plotting a Negative (0°) Root Locus △ 5.6.2 Successive Loop ClosureS △ 5.6.3 Time Delay (W) 5.7 Historical Perspective Summary Review Questions Problems Chapter 6 The Frequency-Response Design Method A Perspective on the Frequency-Response Design Method Chapter Overview 6.1 Frequency Response 6.1.1 Bode Plot Techniques 6.1.2 Steady-State Errors 6.2 Neutral Stability 6.3 The Nyquist Stability Criterion 6.3.1 The Argument Principle 6.3.2 Application of The Argument Principle to Control Design 6.4 Stability Margins 6.5 Bode’s Gain-Phase Relationship 6.6 Closed-Loop Frequency Response 6.7 Compensation 6.7.1 PD Compensation 6.7.2 Lead Compensation (W) 6.7.3 PI Compensation 6.7.4 Lag Compensation 6.7.5 PID Compensation 6.7.6 Design Considerations △ 6.7.7 Specifications in Terms of the Sensitivity Function △ 6.7.8 Limitations on Design in Terms of the Sensitivity Function △ 6.8 Time Delay 6.8.1 Time Delay via the Nyquist Diagram (W) △ 6.9 Alternative Presentation of Data 6.9.1 Nichols Chart 6.9.2 The Inverse Nyquist Diagram (W) 6.10?Historical Perspective Summary Review Questions Problems Chapter 7 State-Space Design A Perspective on State-Space Design Chapter Overview 7.1 Advantages of State-Space 7.2 System Description in State-Space 7.3 Block Diagrams and State-Space 7.4 Analysis of the State Equations 7.4.1 Block Diagrams and Canonical Forms 7.4.2 Dynamic Response from the State Equations 7.5 Control-Law Design for Full-State Feedback 7.5.1 Finding the Control Law 7.5.2 Introducing the Reference Input with Full-State Feedback 7.6 Selection of Pole Locations for Good Design 7.6.1 Dominant Second-Order Poles 7.6.2 Symmetric Root Locus (SRL) 7.6.3 Comments on the Methods 7.7 Estimator Design 7.7.1 Full-Order Estimators 7.7.2 Reduced-Order Estimators 7.7.3 Estimator Pole Selection 7.8 Compensator Design: Combined Control Law and Estimator (W) 7.9 Introduction of the Reference Input with the Estimator (W) 7.9.1 General Structure for the Reference Input 7.9.2 Selecting the Gain 7.10?Integral Control and Robust Tracking 7.10.1?Integral Control △ 7.10.2?Robust Tracking Control: The Error-Space Approach △ 7.10.3?Model-Following Design △ 7.10.4?The Extended Estimator △ 7.11?Loop Transfer Recovery △ 7.12?Direct Design with Rational Transfer Functions △ 7.13?Design for Systems with Pure Time Delay 7.14?Solution of State Equations (W) 7.15?Historical Perspective Summary Review Questions Problems Chapter 8 Digital Control A Perspective on Digital Control Chapter Overview 8.1 Digitization 8.2 Dynamic Analysis of Discrete Systems 8.2.1 z-Transform 8.2.2 z-Transform Inversion 8.2.3 Relationship Between s and z 8.2.4 Final Value Theorem 8.3 Design Using Discrete Equivalents 8.3.1 Tustin’s Method 8.3.2 Zero-Order Hold (ZOH) Method 8.3.3 Matched Pole-Zero (MPZ) Method 8.3.4 Modified Matched Pole-Zero (MMPZ) Method 8.3.5 Comparison of Digital Approximation Methods 8.3.6 Applicability Limits of the Discrete Equivalent Design Method 8.4 Hardware Characteristics 8.4.1 Analog-to-Digital (A/D) Converters 8.4.2 Digital-to-Analog Converters 8.4.3 Anti-Alias Prefilters 8.4.4 The Computer 8.5 Sample-Rate Selection 8.5.1 Tracking Effectiveness 8.5.2 Disturbance Rejection 8.5.3 Effect of Anti-Alias Prefilter 8.5.4 Asynchronous Sampling △ 8.6 Discrete Design 8.6.1 Analysis Tools 8.6.2 Feedback Properties 8.6.3 Discrete Design Example 8.6.4 Discrete Analysis of Designs 8.7 Discrete State-Space Design Methods (W) 8.8 Historical Perspective Summary Review Questions Problems Chapter 9 Nonlinear Systems A Perspective on Nonlinear Systems Chapter Overview 9.1 Introduction and Motivation: Why Study Nonlinear Systems? 9.2 Analysis by Linearization 9.2.1 Linearization by Small-Signal Analysis 9.2.2 Linearization by Nonlinear Feedback 9.2.3 Linearization by Inverse Nonlinearity 9.3 Equivalent Gain Analysis Using the Root Locus 9.3.1 Integrator Antiwindup 9.4 Equivalent Gain Analysis Using Frequency Response: Describing Functions 9.4.1 Stability Analysis Using Describing Functions △ 9.5 Analysis and Design Based on Stability 9.5.1 The Phase Plane 9.5.2 Lyapunov Stability Analysis 9.5.3 The Circle Criterion 9.6 Historical Perspective Summary Review Questions Problems Chapter 10 Control System Design: Principles and Case Studies A Perspective on Design Principles Chapter Overview 10.1 An Outline of Control Systems Design 10.2 Design of a Satellite’s Attitude Control 10.3 Lateral and Longitudinal Control of a Boeing 747 ? 10.3.1 Yaw Damper ? 10.3.2 Altitude-Hold Autopilot 10.4 Control of the Fuel-Air Ratio in an Automotive Engine 10.5 Control of a Quadrotor Drone 10.6 Control of RTP Systems in Semiconductor Wafer Manufacturing 10.7 Chemotaxis, or How E. Coli Swims Away from Trouble 10.8 Historical Perspective Summary Review Questions Problems Appendix A Laplace Transforms A.1 The ?_ Laplace Transform ?A.1.1 Properties of Laplace Transforms ?A.1.2 Inverse Laplace Transform by Partial-Fraction Expansion ?A.1.3 The Initial Value Theorem ?A.1.4 Final Value Theorem Appendix B Solutions to the Review Questions Appendix C Matlab Commands Bibliography List of Appendices on the Web① Appendix WA A Review of Complex Variables Appendix WB Summary of Matrix Theory Appendix WC Controllability and Observability Appendix WD Ackermann’s Formula for Pole Placement Appendix W2.1.4 Complex Mechanical Systems Appendix W3.2.3 Mason’s Rule and the Signal-Flow Graph Appendix W3.6.3.1 Routh Special Cases Appendix W3.7 System Identification Appendix W3.8 Amplitude and Time Scaling Appendix W4.1.4.1 The Filtered Case Appendix W4.2.2.1 Truxal’s Formula for the Error Constants Appendix W4.5 Introduction to Digital Control Appendix W4.6 Sensitivity of Time Response to Parameter Change Appendix W5.4.4 Analog and Digital Implementations Appendix W5.6.3 Root Locus with Time Delay Appendix W6.7.2 Digital Implementation of Example 6.15 Appendix W6.8.1 Time Delay via the Nyquist Diagram Appendix W6.9.2 The Inverse Nyquist Diagram Appendix W7.8 Digital Implementation of Example 7.31 Appendix W7.9 Digital Implementation of Example 7.33 Appendix W7.14 Solution of State Equations Appendix W8.7 Discrete State-Space Design Methods
你還可能感興趣
我要評論
|