定 價(jià):38 元
叢書(shū)名:國(guó)外優(yōu)秀數(shù)學(xué)著作原版系列
- 作者:[澳] 喬納森·希爾曼(Jonathan Hillman) 著
- 出版時(shí)間:2020/11/1
- ISBN:9787560390925
- 出 版 社:哈爾濱工業(yè)大學(xué)出版社
- 中圖法分類(lèi):O189.24
- 頁(yè)碼:224
- 紙張:膠版紙
- 版次:1
- 開(kāi)本:16開(kāi)
為了解決四維紐結(jié)理論中的一些問(wèn)題,本書(shū)作者利用了各種技巧,重點(diǎn)研究了S^T中的結(jié)及其基本群包含的交換正規(guī)子群。它們的類(lèi)包含了具有幾何吸引力和容易理解的示例。此外,還可以將代數(shù)方法得到的結(jié)果應(yīng)用于這些問(wèn)題之中。四維拓?fù)淙〉玫墓ぷ鲗⒃诤竺娴恼鹿?jié)中應(yīng)用到2-紐結(jié)的分類(lèi)問(wèn)題之中。本書(shū)共八章,包括了結(jié)和相關(guān)流形、結(jié)群、局部化與非球面性等內(nèi)容。本書(shū)由淺入深,適合高等院校師生、代數(shù)拓?fù)鋵W(xué)相關(guān)專(zhuān)業(yè)的研究者、愛(ài)好者參考閱讀。
Since Gramain wrote the above words in a Seminaire Bourbaki report on classical knot theory in 1976 there have been major advances in 4-dimensional topology, by Casson, Freedman and Quinn. Although a complete classification of 2-knots is not yet in sight, it now seems plausible to expect a characterization of knots in some significant classes in terms of invariants related to the knot group. Thus the subsidiary problem of characterizing 2-knot groups is an essential part of any attempt to classify 2-knots, and it is the principal topic of this book, which is largely algebraic in tone. However we also draw upon 3-manifold theory (for the construction of many examples) and 4-dimensional surgery (to establish uniqueness of knots with given invariants). It is the interplay between algebra and 3-and 4-dimensional topology that makes the study of 2-knots of particular interest.
Preface
Chapter 1 Knots and Related Manifolds
Chapter 2 The Knot Group
Chapter 3 Localization and Asphericity
Chapter 4 The Rank 1 Case
Chapter 5 The Rank 2 Case
Chapter 6 Ascending Series and the Large Rank Cases
Chapter 7 The Homotopy Type of M(K)
Chapter 8 Applying Surgery to Determine the Knot
Appendix A Four-Dimensional Geometries and Smooth Knots
Appendix B Reflexive Cappell-Shaneson 2-Knots
Some Open Questions
References
Index
編輯手記