定 價(jià):169 元
叢書名:美國數(shù)學(xué)會經(jīng)典影印系列
- 作者:Jeffrey,Rauch著
- 出版時(shí)間:2022/2/1
- ISBN:9787040569803
- 出 版 社:高等教育出版社
- 中圖法分類:O175.27
- 頁碼:396
- 紙張:
- 版次:1
- 開本:16開
本書介紹了雙曲型方程的方方面面,這類方程特別適合描述以有限速度傳播的波。本書的主題包括非線性幾何光學(xué)、短波長解的漸近分析以及此類波的非線性相互作用。
作者詳細(xì)論述了波的阻尼、共振、色散衰減、由共振相互作用引起的密集振蕩的可壓縮 Euler 方程的解。許多基本結(jié)果首次以教科書的形式呈現(xiàn)。除密集振蕩外,本書還處理了傳播的精確速度及三波相互作用方程組的存在性和穩(wěn)定性等問題。
本書的特色之一是其關(guān)注提出思想和證明的動(dòng)機(jī),展示它們?nèi)绾螐南嚓P(guān)的更簡單情形演進(jìn)而來。本書還提供了大量習(xí)題供讀者進(jìn)行練習(xí)。
作者是密歇根大學(xué)的數(shù)學(xué)教授,偏微分方程知名專家,為雙曲型偏微分方程的三個(gè)領(lǐng)域(非線性微局部分析、波的控制和非線性幾何光學(xué))的變革做出了重要貢獻(xiàn)。本書可供對雙曲型偏微分方程感興趣的研究生和研究人員使用參考。
Preface
§P.1.How this book came to be, and its peculiarities
§P.2.A bird's eye view of hyperbolic equations
Chapter 1.Simple Examples of Propagation
§1.1.The method of characteristics
§1.2.Examples of propagation of singularities using progressing waves
§1.3.Group velocity and the method of nonstationary phase
§1.4.Fourier synthesis and rectilinear propagation
§1.5.A cautionary example in geometric optics
§1.6.The law of reflection
1.6.1.The method of images
1.6.2.The plane wave derivation
1.6.3.Reflected high frequency wave packets
§1.7.Snell's law of refraction
Chapter 2.The Linear Cauchy Problem
§2.1.Energy estimates for symmetric hyperbolic systems
§2.2.Existence theorems for symmetric hyperbolic systems
62.3.Finite speed of propagation
2.3.1.The method of characteristics
2.3.2.Speed estimates uniform in space
2.3.3.Time-like and propagation cones
§2.4.Plane waves, group velocity, and phase velocities
§2.5.Precise speed estimate
§2.6.Local Cauchy problems
Appendix 2.I.Constant coefficient hyperbolic systems
Appendix 2.II.Functional analytic proof of existence
Chapter 3.Dispersive Behavior
§3.1.Orientation
§3.2.Spectral decomposition of solutions
§3.3.Large time asymptotics
§3.4.Maximally dispersive systems
3.4.1.The L1 → Lo decay estimate
3.4.2.Fixed time dispersive Sobolev estimates
3.4.3.Strichartz estimates
Appendix 3.I.Perturbation theory for semisimple eigenvalues
Appendix 3.IⅡ.The stationary phase inequality
Chapter 4.Linear Elliptic Geometric Optics
§4.1.Euler's method and elliptic geometric optics with constant coefficients
§4.2.Iterative improvement for variable coefficients and nonlinear phases
§4.3.Formal asymptotics approach
§4.4.Perturbation approach
§4.5.Elliptic regularity
§4.6.The Microlocal Elliptic Regularity Theorem
Chapter 5.Linear Hyperbolic Geometric Optics
§5.1.Introduction
§5.2.Second order scalar constant coefficient principal part
5.2.1.Hyperbolic problems
5.2.2.The quasiclassical limit of quantum mechanics
§5.3.Symmetric hyperbolic systems
§5.4.Rays and transport
5.4.1.The smooth variety hypothesis
5.4.2.Transport for L = L1(θ)
5.4.3.Energy transport with variable coefficients
§5.5.The Lax para metrix and propagation of singularities
5.5.1.The Lax parametrix
5.5.2.Oscillatory integrals and Fourier integral operators
5.5.3.Small time propagation of singularities
5.5.4.Global propagation of singularities
§5.6.An application to stabilization
Appendix 5.I.Hamilton-Jacobi theory for the eikonal equation
5.I.1.Introduction
5.I.2.Determining the germ of o at the initial manifold
5.I.3.Propagation laws for φ, dφ
5.I.4.The symplectic approach
Chapter 6.The Nonlinear Cauchy Problem
§6.1.Introduction
§6.2.Schauder's lemma and Sobolev embedding
§6.3.Basic existence theorem
§6.4.Moser's inequality and the nature of the breakdown
§6.5.Perturbation theory and smooth dependence
§6.6.The Cauchy problem for quasilinear symmetric hyperbolic systems
6.6.1.Existence of solutions
6.6.2.Examples of breakdown
6.6.3.Dependence on initial data
§6.7.Global small solutions for maximally dispersive nonlinear systems
§6.8.The subcritical nonlinear Klein-Gordon equation in the energy space
6.8.1.Introductory remarks
6.8.2.The ordinary differential equation and non-lipshitzean F
6.8.3.Subcritical nonlinearities
Chapter 7.One Phase Nonlinear Geometric Optics
§7.1.Amplitudes and harmonics
§7.2.Elementary examples of generation of harmonics
§7.3.Formulating the ansatz
§7.4.Equations for the profiles
§7.5.Solving the profile equations
Chapter 8.Stability for One Phase Nonlinear Geometric Optics
§8.1.The H8(Rd) norms
§8.2.Hs estimates for linear symmetric hyperbolic systems
§8.3.Just