本書從物理學(xué)而不是數(shù)學(xué)概念的角度介紹了目前動力系統(tǒng)中均勻雙曲吸引子研究的進(jìn)展小結(jié)構(gòu)穩(wěn)定的吸引子表現(xiàn)出強(qiáng)烈的隨機(jī)性,但是對于動力系統(tǒng)中函數(shù)和參數(shù)的變化不敏感;陔p曲混沌的特征,本書將展示如何找到物理系統(tǒng)中的雙曲混沌吸引子,以及怎樣設(shè)計(jì)具有雙曲混沌的物理系統(tǒng)。
本書可以作為研究生和高年級本科生教材,也可以供大學(xué)教授以及物理學(xué)、機(jī)械學(xué)和工程學(xué)相關(guān)研究人員參考。
Part I Basic Notions and Review
Part II Low-Dimensional Models
Part III Higher-Dimensional Systems and Phenomena
Part IV Experimental Studies
Appendix A Computation of Lyapunov Exponents:The BenettinAlgorithm
Appendix B Henon and Ikeda Maps
References
Appendix C Smale's Horseshoe and Homoclinic Tangle
References
Appendix D Fractal Dimensions and Kaplan-Yorke Formula
References
Appendix E Hunt's Model: Formal Definition
References
Appendix F Geodesics on a Compact Surface of NegativeCurvature
References
Part I Basic Notions and Review
Part II Low-Dimensional Models
Part III Higher-Dimensional Systems and Phenomena
Part IV Experimental Studies
Appendix A Computation of Lyapunov Exponents:The BenettinAlgorithm
Appendix B Henon and Ikeda Maps
References
Appendix C Smale's Horseshoe and Homoclinic Tangle
References
Appendix D Fractal Dimensions and Kaplan-Yorke Formula
References
Appendix E Hunt's Model: Formal Definition
References
Appendix F Geodesics on a Compact Surface of NegativeCurvature
References
Appendix G Effect of Noise in a System with a HyperbolicAttractor
References
Index