Functions of Complex Variables 復變函數(shù)論 第二版
定 價:35 元
- 作者:馬立新
- 出版時間:2014/12/1
- ISBN:9787109197268
- 出 版 社:中國農(nóng)業(yè)出版社
- 中圖法分類:O174.5
- 頁碼:224
- 紙張:純質(zhì)紙
- 版次:2
- 開本:16開
馬立新編著的這本《復變函數(shù)論(第2版)》共6 章,主要內(nèi)容包括復數(shù)與復變函數(shù)、解析函數(shù)、 復變函數(shù)的積分、級數(shù)、留數(shù)及其應用和共形映射等 ,較全面、 系統(tǒng)地介紹了復變函數(shù)的基礎知識。內(nèi)容處理上重點 突出、敘述 簡明,每節(jié)末附有適量習題供讀者選用,適合高等師 范院校數(shù)學 系及普通綜合性大學數(shù)學系高年級學生使用。
科信源圖書專營店是位于全國最大的圖書批發(fā)市場北京西南物流圖書批發(fā)中心的線下實體批發(fā)店鋪,因圖書品種繁多,數(shù)據(jù)龐大,大部分圖書內(nèi)容信息并沒有得到完善的編輯,懇請請您諒解,我們現(xiàn)在正以十二分的速度及努力編輯完善著我店每一本圖書的內(nèi)容信息。如果讀者對某本信息不完善的圖書感興趣,可以放心大膽購買,我店承諾7天無理由退換貨,來回運費我們承擔!線下實體批發(fā)店鋪科信源圖書專營店值得您信賴!
科信源圖書專營店是位于全國最大的圖書批發(fā)市場北京西南物流圖書批發(fā)中心的線下實體批發(fā)店鋪,因圖書品種繁多,數(shù)據(jù)龐大,大部分圖書內(nèi)容信息并沒有得到完善的編輯,懇請請您諒解,我們現(xiàn)在正以十二分的速度及努力編輯完善著我店每一本圖書的內(nèi)容信息。如果讀者對某本信息不完善的圖書感興趣,可以放心大膽購買,我店承諾7天無理由退換貨,來回運費我們承擔!線下實體批發(fā)店鋪科信源圖書專營店值得您信賴!
前言Chapter I Complex Numbers and Functions 1 Complex Numbers 1.1 Complex Number Field 1.2 Complex Plane 1.3 Modulus, Conjugation, Argument, 前言Chapter I Complex Numbers and Functions 1 Complex Numbers 1.1 Complex Number Field 1.2 Complex Plane 1.3 Modulus, Conjugation, Argument, Polar Representation 1.4 Powers and Roots of Complex Numbers Exercises 2 Regions in the Complex Plane 2.1 Some Basic Concept 2.2 Domain and Jordan Curve Exercises 3 Functions of a Complex Variable 3.1 The Concept of Functions of a Complex Variable 3.2 Limits and Continuous Exercises 4 The Extended Complex Plane and the Point at Infinity 4.1 The Spherical Representation, the Extended Complex Plane 4.2 Some Concepts in the Extended Complex Plane ExercisesChapter II Analytic Functions 1 The Concept of the Analytic Function 1.1 The Derivative of the Functions of a Complex Variable 1.2 Analytic Functions Exercises 2 Cauchy-Riemann Equations Exercises 3 Elementary Functions 3.1 The Exponential Function 3.2 Trigonometric Functions 3.3 Hyperbolic Functions Exercises 4 Multi-Valued Functions 4.1 The Logarithmic Function 4.2 Complex Power Functions 4. 3 Inverse Trigonometric and Hyperbolic Functions ExercisesChapter III Complex Integration 1 The Concept of Contour Integrals 1.1 Integral of a Complex Function over a Real Interval 1.2 Contour Integrals Exercises Cauchy-Goursat Theorem 2.1 Cauchy Theorem 2.2 Cauchy Integral Formula 2.3 Derivatives of Analytic Functions 2.4 Liouville's Theorem and the Fundamental Theorem of Algebra Exercises Harmonic Functions ExercisesChapter IV Series 1 Basic Properties of Series 1.1 Convergence of Sequences 1.2 Convergence of Series 1.3 Uniform convergence Exercises 2 Power Series Exercises 3 Taylor Series Exercises 4 Laurent Series Exercises 5 Zeros of an Analytic Functions and Uniquely Determined Analytic Functions 5.1 Zeros of Analytic Functions 5.2 Uniquely Determined Analytic Functions 5.3 Maximum Modulus Principle Exercises 6 The Three Types of Isolated Singular Points at a Finite Point Exercises 7 The Three Types of Isolated Singular Points at a Infinite Point ExercisesChapter V Calculus of Residues 1 Residues 1.1 Residues 1.2 Cauchy's Residue Theorem 1.3 The Calculus of Residue Exercises 2 Applications of Residue 2.1 The Type of Definite Integral □ 2.2 The Type of Improper Integral □ 2.3 The Type of Improper Integral □ Exercises 3 Argument Principle ExercisesChapter VI Conformal Mappings 1 Analytic Transformation 1.1 Preservation of Domains of Analytic Transformation 1.2 Conformality of Analytic Transformation Exercises 2 Rational Functions 2.1 Polynomials 2.2 Rational Functions Exercises 3 Fractional Linear Transformations Exercises 4 Elementary Conformal Mappings Exercises 5 The Riemann Mapping Theorem ExercisesAppendix Appendix 1 Appendix 2AnswersBibliography