《應(yīng)用線性代數(shù)》是根據(jù)普通高等院校線性代數(shù)課程的教學(xué)要求與考研大綱編寫而成,包括行列式、線性方程組、矩陣、矩陣的特征值、二次型、線性空間與線性變換、線性經(jīng)濟(jì)模型、工程技術(shù)與管理中的線性模型等基本內(nèi)容。選編的題型較為豐富,習(xí)題量適度,并在眾多學(xué)科中廣泛選用了一些實(shí)際應(yīng)用的例子,體現(xiàn)了線性代數(shù)在解釋基本原理、簡(jiǎn)化計(jì)算等方面所起到的重要作用。
\\n 在編寫過程中,我們力求培養(yǎng)、提升學(xué)生的應(yīng)用實(shí)踐能力,在教材中以一系列應(yīng)用實(shí)例激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生在掌握線性代數(shù)的基本概念、基本理論和基本方法的同時(shí),能夠了解線性代數(shù)這一數(shù)學(xué)工具在工程技術(shù)、經(jīng)濟(jì)管理等領(lǐng)域中的實(shí)際作用。
\\n 《應(yīng)用線性代數(shù)》可作為經(jīng)濟(jì)類和部分工科類專業(yè)的教材,也可作為其他非數(shù)學(xué)專業(yè)大學(xué)生以及在職人員的參考用書。
\\n
更多科學(xué)出版社服務(wù),請(qǐng)掃碼獲取。
《應(yīng)用線性代數(shù)》共分為8章,分別介紹了行列式、線性方程組、矩陣、特征值、二次型、線性空間與線性變換、線性經(jīng)濟(jì)模型以及工程技術(shù)與管理中的線性模型等內(nèi)容。 《應(yīng)用線性代數(shù)》可作為經(jīng)濟(jì)類和工科類專業(yè)線性代數(shù)課程的教學(xué)用書,也可供其他非數(shù)學(xué)專業(yè)大學(xué)生以及在職人員參考。
前言
第1章 行列式
1.1 二階行列式與三階行列式
1.1.1 二元線性方程組與二階行列式
1.1.2 三元線性方程組與三階行列式
1.2 排列
1.2.1 排列的相關(guān)概念
1.2.2 排列的性質(zhì)
1.3 n階行列式
1.4 行列式的性質(zhì)
1.5 行列式按行(列)展開
1.5.1 余子式與代數(shù)余子式
1.5.2 行列式依行(列)展開法則
1.6 行列式的計(jì)算
1.6.1 數(shù)學(xué)歸納法
1.6.2 遞推法
1.6.3 乘法法則
1.7 克萊姆法則
習(xí)題一
第2章 線性方程組
2.1 消元法
2.2 n維向量及其線性相關(guān)性
2.2.1 n維向量及其運(yùn)算
2.2.2 向量組的線性相關(guān)性
2.2.3 向量組的秩
2.3 矩陣的秩
2.4 線性方程組有解的判別定理
2.5 線性方程組解的結(jié)構(gòu)
2.5.1 齊次線性方程組解的結(jié)構(gòu)
2.5.2 線性方程組解的結(jié)構(gòu)
習(xí)題二
第3章 矩陣
3.1 矩陣的運(yùn)算
3.1.1 矩陣的加法
3.1.2 矩陣的數(shù)乘
3.1.3 矩陣的乘法
3.1.4 矩陣的轉(zhuǎn)置
3.2 可逆矩陣
3.2.1 可逆矩陣的概念
3.2.2 矩陣可逆的條件
3.3 初等矩陣
3.4 矩陣的分塊
習(xí)題三
第4章 矩陣的特征值
4.1 特征值的概念與性質(zhì)
4.1.1 特征值與特征向量的概念
4.1.2 特征值與特征向量的求法
4.1.3 特征值、特征向量與特征多項(xiàng)式的性質(zhì)
4.2 矩陣的對(duì)角化問題
4.2.1 矩陣的相似
4.2.2 矩陣可對(duì)角化的一個(gè)充分必要條件
4.3 實(shí)對(duì)稱矩陣
4.3.1 向量的內(nèi)積
4.3.2 向量的長(zhǎng)度、夾角與正交
4.3.3 標(biāo)準(zhǔn)正交組
4.3.4 正交矩陣
4.3.5 實(shí)對(duì)稱矩陣可以對(duì)角化
習(xí)題四
第5章 二次型
5.1 二次型的基本概念
5.1.1 二次型及其矩陣表示
5.1.2 線性替換
5.1.3 矩陣的合同
5.2 標(biāo)準(zhǔn)形
5.2.1 主要結(jié)論
5.2.2 配方法
5.2.3 合同變換法
5.2.4 復(fù)二次型和實(shí)二次型的規(guī)范形
5.2.5 用正交線性替換化實(shí)二次型為標(biāo)準(zhǔn)形
5.3 正定二次型
習(xí)題五
第6章 線性空間與線性變換
6.1 線性空間的概念與基本性質(zhì)
6.1.1 線性空間的定義
6.1.2 線性空間的基本性質(zhì)
6.1.3 線性子空間
6.2 維數(shù)、基、坐標(biāo)
6.2.1 基本概念
6.2.2 基到基的過渡矩陣
6.2.3 坐標(biāo)變換公式
6.3 線性變換的概念與運(yùn)算
6.3.1 線性變換的概念
6.3.2 線性變換的性質(zhì)
6.3.3 線性變換的線性運(yùn)算
6.4 線性變換的矩陣
6.4.1 線性變換矩陣的定義
6.4.2 線性變換運(yùn)算結(jié)果的矩陣
6.4.3 線性變換在兩個(gè)基下矩陣的關(guān)系
習(xí)題六
第7章 線性經(jīng)濟(jì)模型
7.1 基本概念
7.2 簡(jiǎn)單國民收入模型
7.2.1 簡(jiǎn)單凱恩斯國民收入模型
7.2.2 ?怂-漢森模型:封閉經(jīng)濟(jì)
7.3 關(guān)聯(lián)商品市場(chǎng)模型
7.4 價(jià)格彈性矩陣
7.5 投入產(chǎn)出模型
7.6 狀態(tài)轉(zhuǎn)移矩陣
7.6.1 市場(chǎng)占有率轉(zhuǎn)移
7.6.2 企事業(yè)人員結(jié)構(gòu)控制
7.6.3 矩陣冪次的計(jì)算
習(xí)題七
第8章 工程技術(shù)與管理中的線性模型
8.1 交通流量模型
8.1.1 線性方程組的建立
8.1.2 方程組解的意義
8.2 GOOGLE與網(wǎng)頁排序算法
8.3 基因遺傳
8.3.1 親體基因遺傳方式
8.3.2 隨機(jī)交配情形
8.3.3 固定母體基因?qū)?br />8.4 密碼與解密中的線性模型
8.4.1 線性置換密碼系統(tǒng)
8.4.2 Hill密碼系統(tǒng)
8.5 最小二乘法
習(xí)題八
附錄 MATLAB簡(jiǎn)介
參考文獻(xiàn)